Advertisement

Mechanical ventilation during cardiopulmonary resuscitation: influence of positive end-expiratory pressure and head-torso elevation

      Abstract

      Background

      Efficient ventilation is important during cardiopulmonary resuscitation (CPR). Nevertheless, there is insufficient knowledge on how the patient’s position affects ventilatory parameters during mechanically assisted CPR. We studied ventilatory parameters at different positive end-expiratory pressure (PEEP) levels and when using an inspiratory impedance valve (ITD) during horizontal and head-up CPR (HUP-CPR).

      Methods

      In this human cadaver experimental study, we measured tidal volume (VT) and pressure during CPR at different randomized PEEP levels (0, 5 or 10 cmH2O) or with an ITD. CPR was performed, in the following order: horizontal (FLAT), at 18° and then at 35° head-thorax elevation. During the inspiratory phase we measured the net tidal volume (VT) adjusted to predicted body weight (VTPBW), reversed airflow (RAF), and maximum and minimum airway pressure (Pmax and Pmin).

      Results

      Using ten thawed fresh-frozen cadavers we analyzed the inspiratory phase of 1843 respiratory cycles, 229 without CPR and 1614 with CPR. In a mixed linear model, thoracic position and PEEP significantly impacted VTPBW (p < 0.001 for each), and the insufflation time, thoracic position and PEEP significantly affected the RAF (p < 0.001 for each) and Pmax (p < 0.001). For Pmin, only PEEP was significant (p < 0.001). In subgroup analysis, at 35° VTPBW and Pmax were significantly reduced compared with the flat or 18° position.

      Conclusion

      When using mechanical ventilation during CPR, it seems that the PEEP level and patient position are important determinants of respiratory parameters. Moreover, tidal volume seems to be lower when the thorax is positioned at 35°.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Resuscitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gräsner J.-T.
        • Herlitz J.
        • Tjelmeland I.B.M.
        • Wnent J.
        • Masterson S.
        • Lilja G.
        • et al.
        European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe.
        Resuscitation. 2021; 161: 61-79https://doi.org/10.1016/j.resuscitation.2021.02.007
        • Perkins G.D.
        • Callaway C.W.
        • Haywood K.
        • Neumar R.W.
        • Lilja G.
        • Rowland M.J.
        • et al.
        Brain injury after cardiac arrest.
        Lancet. 2021; 398: 1269-1278https://doi.org/10.1016/S0140-6736(21)00953-3
        • Duhem H.
        • Moore J.C.
        • Rojas-Salvador C.
        • Salverda B.
        • Lick M.
        • Pepe P.
        • et al.
        Improving post-cardiac arrest cerebral perfusion pressure by elevating the head and thorax.
        Resuscitation. 2021; 159: 45-53https://doi.org/10.1016/j.resuscitation.2020.12.016
        • Moore J.C.
        • Holley J.
        • Segal N.
        • Lick M.C.
        • Labarère J.
        • Frascone R.J.
        • et al.
        Consistent head up cardiopulmonary resuscitation haemodynamics are observed across porcine and human cadaver translational models.
        Resuscitation. 2018; 132: 133-139https://doi.org/10.1016/j.resuscitation.2018.04.009
        • Ryu H.H.
        • Moore J.C.
        • Yannopoulos D.
        • Lick M.
        • McKnite S.
        • Shin S.D.
        • et al.
        The Effect of Head Up Cardiopulmonary Resuscitation on Cerebral and Systemic Hemodynamics.
        Resuscitation. 2016; 102: 29-34https://doi.org/10.1016/j.resuscitation.2016.01.033
        • Moore J.C.
        • Salverda B.
        • Lick M.
        • Rojas-Salvador C.
        • Segal N.
        • Debaty G.
        • et al.
        Controlled progressive elevation rather than an optimal angle maximizes cerebral perfusion pressure during head up CPR in a swine model of cardiac arrest.
        Resuscitation. 2020; 150: 23-28https://doi.org/10.1016/j.resuscitation.2020.02.023
        • Lurie K.G.
        • Nemergut E.C.
        • Yannopoulos D.
        • Sweeney M.
        The Physiology of Cardiopulmonary Resuscitation.
        Anesth Analg. 2016; 122: 767-783https://doi.org/10.1213/ANE.0000000000000926
        • Robba C.
        • Siwicka-Gieroba D.
        • Sikter A.
        • Battaglini D.
        • Dąbrowski W.
        • Schultz M.J.
        • et al.
        Pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest.
        Intensive Care Med Exp. 2020; 8: 19https://doi.org/10.1186/s40635-020-00307-1
        • Orso D.
        • Vetrugno L.
        • Federici N.
        • Borselli M.
        • Spadaro S.
        • Cammarota G.
        • et al.
        Mechanical Ventilation Management During Mechanical Chest Compressions.
        Respir Care. 2021; 66: 334-346https://doi.org/10.4187/respcare.07775
        • Chang M.P.
        • Idris A.H.
        The past, present, and future of ventilation during cardiopulmonary resuscitation.
        Curr Opin Crit Care. 2017; 23: 188-192https://doi.org/10.1097/MCC.0000000000000415
        • Speer T.
        • Dersch W.
        • Kleine B.
        • Neuhaus C.
        • Kill C.
        Mechanical Ventilation During Resuscitation: How Manual Chest Compressions Affect a Ventilator’s Function.
        Adv Ther. 2017; 34: 2333-2344https://doi.org/10.1007/s12325-017-0615-7
        • Fuest K.
        • Dorfhuber F.
        • Lorenz M.
        • von Dincklage F.
        • Mörgeli R.
        • Kuhn K.F.
        • et al.
        Comparison of volume-controlled, pressure-controlled, and chest compression-induced ventilation during cardiopulmonary resuscitation with an automated mechanical chest compression device: A randomized clinical pilot study.
        Resuscitation. 2021; 166: 85-92https://doi.org/10.1016/j.resuscitation.2021.07.010
        • Neumamm L.B.A.
        • Jardim-Neto A.C.
        • Motta-Ribeiro G.C.
        Empirical evidence for safety of mechanical ventilation during simulated cardiopulmonary resuscitation on a physical model.
        Am J Emerg Med. 2021; 48: 312-315https://doi.org/10.1016/j.ajem.2021.06.062
        • Beitler J.R.
        • Malhotra A.
        • Thompson B.T.
        Ventilator-Induced Lung Injury.
        Clin Chest Med. 2016; 37: 633-646https://doi.org/10.1016/j.ccm.2016.07.004
        • Biondi J.W.
        • Schulman D.S.
        • Soufer R.
        • Matthay R.A.
        • Hines R.L.
        • Kay H.R.
        • et al.
        The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction.
        Anesth Analg. 1988; 67: 144-151
        • Soar J.
        • Böttiger B.W.
        • Carli P.
        • Couper K.
        • Deakin C.D.
        • Djärv T.
        • et al.
        European Resuscitation Council Guidelines 2021: Adult advanced life support.
        Resuscitation. 2021; 161: 115-151https://doi.org/10.1016/j.resuscitation.2021.02.010
        • Duchatelet C.
        • Kalmar A.F.
        • Monsieurs K.G.
        • Hachimi-Idrissi S.
        Chest compressions during ventilation in out-of-hospital cardiac arrest cause reversed airflow.
        Resuscitation. 2018; 129: 97-102https://doi.org/10.1016/j.resuscitation.2018.03.035
        • Orlob S.
        • Wittig J.
        • Hobisch C.
        • Auinger D.
        • Honnef G.
        • Fellinger T.
        • et al.
        Reliability of mechanical ventilation during continuous chest compressions: a crossover study of transport ventilators in a human cadaver model of CPR.
        Scand J Trauma Resusc Emerg Med. 2021; 29: 102https://doi.org/10.1186/s13049-021-00921-2
        • Duhem H.
        • Viglino D.
        • Bellier A.
        • Tanguy S.
        • Descombe V.
        • Boucher F.
        • et al.
        Cadaver models for cardiac arrest: A systematic review and perspectives.
        Resuscitation. 2019; 9
        • McCarron M.M.
        • Devine B.J.
        Clinical Pharmacy: Case Studies: Case Number 25 Gentamicin Therapy.
        Drug Intell Clin Pharm. 1974; 8: 650-655https://doi.org/10.1177/106002807400801104
        • Beesems S.G.
        • Hardig B.M.
        • Nilsson A.
        • Koster R.W.
        Force and depth of mechanical chest compressions and their relation to chest height and gender in an out-of-hospital setting.
        Resuscitation. 2015; 91: 67-72https://doi.org/10.1016/j.resuscitation.2015.03.020
        • Shrout P.E.
        • Fleiss J.L.
        Intraclass correlations: uses in assessing rater reliability.
        Psychol Bull. 1979; 86: 420-428https://doi.org/10.1037//0033-2909.86.2.420
        • Dean E.
        Effect of Body Position on Pulmonary Function.
        Phys Ther. 1985; 65: 613-618https://doi.org/10.1093/ptj/65.5.613
        • Katz S.
        • Arish N.
        • Rokach A.
        • Zaltzman Y.
        • Marcus E.-L.
        The effect of body position on pulmonary function: a systematic review.
        BMC Pulm Med. 2018; 18: 159https://doi.org/10.1186/s12890-018-0723-4
        • Lesimple A.
        • Fritz C.
        • Hutin A.
        • Charbonney E.
        • Savary D.
        • Delisle S.
        • et al.
        A novel capnogram analysis to guide ventilation during cardiopulmonary resuscitation: clinical and experimental observations.
        Crit Care Lond Engl. 2022; 26: 287https://doi.org/10.1186/s13054-022-04156-0
        • Neth M.R.
        • Benoit J.L.
        • Stolz U.
        • McMullan J.
        Ventilation in Simulated Out-of-Hospital Cardiac Arrest Resuscitation Rarely Meets Guidelines.
        Prehosp Emerg Care. 2021; 25: 712-720https://doi.org/10.1080/10903127.2020.1822481