Advertisement

Extracorporeal cardiopulmonary resuscitation (eCPR) and cerebral perfusion: A narrative review

      Abstract

      Extracorporeal cardiopulmonary resuscitation (eCPR) is emerging as an effective, lifesaving resuscitation strategy for select patients with prolonged or refractory cardiac arrest. Currently, a paucity of evidence-based recommendations is available to guide clinical management of eCPR patients. Despite promising results from initial clinical trials, neurological injury remains a significant cause of morbidity and mortality. Neuropathology associated with utilization of an extracorporeal circuit may interact significantly with the consequences of a prolonged low-flow state that typically precedes eCPR. In this narrative review, we explore current gaps in knowledge about cerebral perfusion over the course of cardiac arrest and resuscitation with a focus on patients treated with eCPR. We found no studies which investigated regional cerebral blood flow or cerebral autoregulation in human cohorts specific to eCPR. Studies which assessed cerebral perfusion in clinical eCPR were small and limited to near-infrared spectroscopy. Furthermore, no studies prospectively or retrospectively evaluated the relationship between epinephrine and neurological outcomes in eCPR patients. In summary, the field currently lacks a comprehensive understanding of how regional cerebral perfusion and cerebral autoregulation are temporally modified by factors such as pre-eCPR low-flow duration, vasopressors, and circuit flow rate. Elucidating these critical relationships may inform future strategies aimed at improving neurological outcomes in patients treated with lifesaving eCPR.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Resuscitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yannopoulos D.
        • Bartos J.
        • Raveendran G.
        • et al.
        Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial.
        Lancet Lond Engl. 2020; 396: 1807-1816https://doi.org/10.1016/S0140-6736(20)32338-2
        • Kennedy J.H.
        The role of assisted circulation in cardiac resuscitation.
        JAMA. 1966; 197: 615-618
        • Beyea M.M.
        • Tillmann B.W.
        • Iansavichene A.E.
        • Randhawa V.K.
        • Van Aarsen K.
        • Nagpal A.D.
        Neurologic outcomes after extracorporeal membrane oxygenation assisted CPR for resuscitation of out-of-hospital cardiac arrest patients: A systematic review.
        Resuscitation. 2018; 130: 146-158https://doi.org/10.1016/j.resuscitation.2018.07.012
        • Gravesteijn B.Y.
        • Schluep M.
        • Disli M.
        • et al.
        Neurological outcome after extracorporeal cardiopulmonary resuscitation for in-hospital cardiac arrest: a systematic review and meta-analysis.
        Crit Care Lond Engl. 2020; 24: 505https://doi.org/10.1186/s13054-020-03201-0
        • Belohlavek J.
        • Smalcova J.
        • Rob D.
        • et al.
        Effect of Intra-arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.
        JAMA. 2022; 327: 737-747https://doi.org/10.1001/jama.2022.1025
        • Migdady I.
        • Rice C.
        • Deshpande A.
        • et al.
        Brain Injury and Neurologic Outcome in Patients Undergoing Extracorporeal Cardiopulmonary Resuscitation: A Systematic Review and Meta-Analysis.
        Crit Care Med. 2020; 48: e611-e619https://doi.org/10.1097/CCM.0000000000004377
        • Zotzmann V.
        • Lang C.N.
        • Bemtgen X.
        • et al.
        Mode of death after extracorporeal cardiopulmonary resuscitation.
        Membranes. 2021; 11: 270https://doi.org/10.3390/membranes11040270
        • Sekhon M.S.
        • Ainslie P.N.
        • Griesdale D.E.
        Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model.
        Crit Care Lond Engl. 2017; 21: 90https://doi.org/10.1186/s13054-017-1670-9
        • Iordanova B.
        • Li L.
        • Clark R.S.B.
        • Manole M.D.
        Alterations in Cerebral Blood Flow after Resuscitation from Cardiac Arrest.
        Front Pediatr. 2017; 5: 174https://doi.org/10.3389/fped.2017.00174
        • Drabek T.
        • Foley L.M.
        • Janata A.
        • et al.
        Global and regional differences in cerebral blood flow after asphyxial versus ventricular fibrillation cardiac arrest in rats using ASL-MRI.
        Resuscitation. 2014; 85: 964-971https://doi.org/10.1016/j.resuscitation.2014.03.314
        • Manole M.D.
        • Kochanek P.M.
        • Bayır H.
        • et al.
        Brain tissue oxygen monitoring identifies cortical hypoxia and thalamic hyperoxia after experimental cardiac arrest in rats.
        Pediatr Res. 2014; 75: 295-301https://doi.org/10.1038/pr.2013.220
        • Manole M.D.
        • Foley L.M.
        • Hitchens T.K.
        • et al.
        Magnetic resonance imaging assessment of regional cerebral blood flow after asphyxial cardiac arrest in immature rats.
        J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2009; 29: 197-205https://doi.org/10.1038/jcbfm.2008.112
        • Guo Y.
        • Cho S.M.
        • Wei Z.
        • et al.
        Early thalamocortical reperfusion leads to neurologic recovery in a rodent cardiac arrest model.
        Neurocrit Care. 2022; 37: 60-72https://doi.org/10.1007/s12028-021-01432-9
        • Bartos J.A.
        • Grunau B.
        • Carlson C.
        • et al.
        Improved survival with extracorporeal cardiopulmonary resuscitation despite progressive metabolic derangement associated with prolonged resuscitation.
        Circulation. 2020; 141: 877-886https://doi.org/10.1161/CIRCULATIONAHA.119.042173
        • Barsan W.G.
        • Levy R.C.
        Experimental design for study of cardiopulmonary resuscitation in dogs.
        Ann Emerg Med. 1981; 10: 135-137https://doi.org/10.1016/s0196-0644(81)80377-0
        • Yagi T.
        • Nagao K.
        • Sakatani K.
        • et al.
        Changes of cerebral oxygen metabolism and hemodynamics during ECPR with hypothermia measured by near-infrared spectroscopy: a pilot study.
        Adv Exp Med Biol. 2013; 789: 121-128https://doi.org/10.1007/978-1-4614-7411-1_17
        • Ehara N.
        • Hirose T.
        • Shiozaki T.
        • et al.
        The relationship between cerebral regional oxygen saturation during extracorporeal cardiopulmonary resuscitation and the neurological outcome in a retrospective analysis of 16 cases.
        J Intensive Care. 2017; 5: 20https://doi.org/10.1186/s40560-017-0216-1
        • Bartos J.A.
        • Carlson K.
        • Carlson C.
        • et al.
        Surviving refractory out-of-hospital ventricular fibrillation cardiac arrest: Critical care and extracorporeal membrane oxygenation management.
        Resuscitation. 2018; 132: 47-55https://doi.org/10.1016/j.resuscitation.2018.08.030
        • Roellke E.
        • Parnia S.
        • Patel J.
        • Friedman S.
        • Mengotto A.
        The impact of extracorporeal membrane oxygenation on cerebral oxygen delivery during cardiac arrest: a case series.
        Resusc Plus. 2021; 5: 100068https://doi.org/10.1016/j.resplu.2020.100068
        • Yagi T.
        • Kawamorita T.
        • Kuronuma K.
        • et al.
        Usefulness of a new device to monitor cerebral blood oxygenation using NIRS during cardiopulmonary resuscitation in patients with cardiac arrest: A pilot study.
        Adv Exp Med Biol. 2020; 1232: 323-329https://doi.org/10.1007/978-3-030-34461-0_41
        • Lassen N.A.
        Cerebral blood flow and oxygen consumption in man.
        Physiol Rev. 1959; 39: 183-238https://doi.org/10.1152/physrev.1959.39.2.183
        • Armstead W.M.
        Cerebral Blood Flow Autoregulation and Dysautoregulation.
        Anesthesiol Clin. 2016; 34: 465-477https://doi.org/10.1016/j.anclin.2016.04.002
        • Sundgreen C.
        • Larsen F.S.
        • Herzog T.M.
        • Knudsen G.M.
        • Boesgaard S.
        • Aldershvile J.
        Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest.
        Stroke. 2001; 32: 128-132https://doi.org/10.1161/01.str.32.1.128
        • Joram N.
        • Beqiri E.
        • Pezzato S.
        • et al.
        Continuous monitoring of cerebral autoregulation in children supported by extracorporeal membrane oxygenation: A pilot study.
        Neurocrit Care. 2021; 34: 935-945https://doi.org/10.1007/s12028-020-01111-1
        • Sekhon M.S.
        • Griesdale D.E.
        • Ainslie P.N.
        • et al.
        Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest.
        Resuscitation. 2019; 141: 96-103https://doi.org/10.1016/j.resuscitation.2019.05.036
        • Putzer G.
        • Martini J.
        • Spraider P.
        • et al.
        Adrenaline improves regional cerebral blood flow, cerebral oxygenation and cerebral metabolism during CPR in a porcine cardiac arrest model using low-flow extracorporeal support.
        Resuscitation. 2021; (S0300-9572(21)00289-6)https://doi.org/10.1016/j.resuscitation.2021.07.036
        • Spinelli E.
        • Davis R.P.
        • Ren X.
        • et al.
        Thrombolytic-enhanced extracorporeal cardiopulmonary resuscitation after prolonged cardiac arrest.
        Crit Care Med. 2016; 44: e58-e69https://doi.org/10.1097/CCM.0000000000001305
        • Cho S.M.
        • Farrokh S.
        • Whitman G.
        • Bleck T.P.
        • Geocadin R.G.
        neurocritical care for extracorporeal membrane oxygenation patients.
        Crit Care Med. 2019; 47: 1773-1781https://doi.org/10.1097/CCM.0000000000004060
        • Cardim D.
        • Griesdale D.E.
        • Ainslie P.N.
        • et al.
        A comparison of non-invasive versus invasive measures of intracranial pressure in hypoxic ischaemic brain injury after cardiac arrest.
        Resuscitation. 2019; 137: 221-228https://doi.org/10.1016/j.resuscitation.2019.01.002
        • Bein B.
        • Cavus E.
        • Stadlbauer K.H.
        • et al.
        Monitoring of cerebral oxygenation with near infrared spectroscopy and tissue oxygen partial pressure during cardiopulmonary resuscitation in pigs.
        Eur J Anaesthesiol. 2006; 23: 501-509https://doi.org/10.1017/S0265021506000366
        • Putzer G.
        • Braun P.
        • Strapazzon G.
        • et al.
        Monitoring of brain oxygenation during hypothermic CPR - A prospective porcine study.
        Resuscitation. 2016; 104: 1-5https://doi.org/10.1016/j.resuscitation.2016.03.027
        • Mikkelsen M.L.G.
        • Ambrus R.
        • Rasmussen R.
        • et al.
        The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets.
        Acta Vet Scand. 2018; 60: 8https://doi.org/10.1186/s13028-018-0362-z
        • Sørensen H.
        • Secher N.H.
        • Siebenmann C.
        • et al.
        Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine.
        Anesthesiology. 2012; 117: 263-270https://doi.org/10.1097/ALN.0b013e3182605afe
        • Grocott H.P.
        • Davie S.N.
        Cerebral oximetry determination of desaturation with norepinephrine administration may be device manufacturer specific.
        Anesthesiology. 2013; 118: 982https://doi.org/10.1097/ALN.0b013e3182874672
        • Kuttner S.
        • Wickstrøm K.K.
        • Lubberink M.
        • et al.
        Cerebral blood flow measurements with 15O-water PET using a non-invasive machine-learning-derived arterial input function.
        J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2021; 41: 2229-2241https://doi.org/10.1177/0271678X21991393
        • Ameloot K.
        • Genbrugge C.
        • Meex I.
        • et al.
        An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: time to drop “one-size-fits-all” hemodynamic targets?.
        Resuscitation. 2015; 90: 121-126https://doi.org/10.1016/j.resuscitation.2015.03.001
        • Pham P.
        • Bindra J.
        • Chuan A.
        • Jaeger M.
        • Aneman A.
        Are changes in cerebrovascular autoregulation following cardiac arrest associated with neurological outcome? Results of a pilot study.
        Resuscitation. 2015; 96: 192-198https://doi.org/10.1016/j.resuscitation.2015.08.007
        • Nishizawa H.
        • Kudoh I.
        Cerebral autoregulation is impaired in patients resuscitated after cardiac arrest.
        Acta Anaesthesiol Scand. 1996; 40: 1149-1153https://doi.org/10.1111/j.1399-6576.1996.tb05579.x
        • Skrifvars M.B.
        • Åneman A.
        • Ameloot K.
        Individualized blood pressure targets during postcardiac arrest intensive care.
        Curr Opin Crit Care. 2020; 26: 259-266https://doi.org/10.1097/MCC.0000000000000722
        • Hoiland R.L.
        • Sekhon M.S.
        • Cardim D.
        • et al.
        Lack of agreement between optimal mean arterial pressure determination using pressure reactivity index versus cerebral oximetry index in hypoxic ischemic brain injury after cardiac arrest.
        Resuscitation. 2020; 152: 184-191https://doi.org/10.1016/j.resuscitation.2020.03.016
        • Ameloot K.
        • De Deyne C.
        • Eertmans W.
        • et al.
        Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the Neuroprotect post-cardiac arrest trial.
        Eur Heart J. 2019; 40: 1804-1814https://doi.org/10.1093/eurheartj/ehz120
        • Jakkula P.
        • Pettilä V.
        • Skrifvars M.B.
        • et al.
        Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial.
        Intensive Care Med. 2018; 44: 2091-2101https://doi.org/10.1007/s00134-018-5446-8
        • Levy Y.
        • Hutin A.
        • Lidouren F.
        • et al.
        Targeted high mean arterial pressure aggravates cerebral hemodynamics after extracorporeal resuscitation in swine.
        Crit Care Lond Engl. 2021; 25: 369https://doi.org/10.1186/s13054-021-03783-3
        • Caldas J.R.
        • Haunton V.J.
        • Panerai R.B.
        • Hajjar L.A.
        • Robinson T.G.
        Cerebral autoregulation in cardiopulmonary bypass surgery: a systematic review.
        Interact Cardiovasc Thorac Surg. 2018; 26: 494-503https://doi.org/10.1093/icvts/ivx357
        • Papademetriou M.D.
        • Tachtsidis I.
        • Elliot M.J.
        • Hoskote A.
        • Elwell C.E.
        Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation.
        J Biomed Opt. 2012; 17: 067008https://doi.org/10.1117/1.JBO.17.6.067008
        • Short B.L.
        • Walker L.K.
        • Bender K.S.
        • Traystman R.J.
        Impairment of cerebral autoregulation during extracorporeal membrane oxygenation in newborn lambs.
        Pediatr Res. 1993; 33: 289-294https://doi.org/10.1203/00006450-199303000-00018
        • Ingyinn M.
        • Lee J.
        • Short B.L.
        • Viswanathan M.
        Venoarterial extracorporeal membrane oxygenation impairs basal nitric oxide production in cerebral arteries of newborn lambs.
        Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2000; 1: 161-165https://doi.org/10.1097/00130478-200010000-00013
        • Ingyinn M.
        • Rais-Bahrami K.
        • Viswanathan M.
        • Short B.L.
        Altered cerebrovascular responses after exposure to venoarterial extracorporeal membrane oxygenation: role of the nitric oxide pathway.
        Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2006; 7: 368-373https://doi.org/10.1097/01.PCC.0000225372.38460.12
        • Ono M.
        • Joshi B.
        • Brady K.
        • et al.
        Cerebral blood flow autoregulation is preserved after continuous-flow left ventricular assist device implantation.
        J Cardiothorac Vasc Anesth. 2012; 26: 1022-1028https://doi.org/10.1053/j.jvca.2012.07.014
        • Cornwell W.K.
        • Tarumi T.
        • Aengevaeren V.L.
        • et al.
        Effect of pulsatile and nonpulsatile flow on cerebral perfusion in patients with left ventricular assist devices.
        J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2014; 33: 1295-1303https://doi.org/10.1016/j.healun.2014.08.013
        • Richardson A.S.C.
        • Tonna J.E.
        • Nanjayya V.
        • et al.
        Extracorporeal Cardiopulmonary Resuscitation in Adults. Interim Guideline Consensus Statement From the Extracorporeal Life Support Organization.
        ASAIO J Am Soc Artif Intern Organs 1992. 2021; 67: 221-228https://doi.org/10.1097/MAT.0000000000001344
        • Abrams D.
        • MacLaren G.
        • Lorusso R.
        • et al.
        Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications.
        Intensive Care Med. 2021; https://doi.org/10.1007/s00134-021-06514-y
        • Buunk G.
        • van der Hoeven J.G.
        • Meinders A.E.
        Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest.
        Stroke. 1997; 28: 1569-1573https://doi.org/10.1161/01.str.28.8.1569
        • Veraar C.M.
        • Rinösl H.
        • Kühn K.
        • et al.
        Non-pulsatile blood flow is associated with enhanced cerebrovascular carbon dioxide reactivity and an attenuated relationship between cerebral blood flow and regional brain oxygenation.
        Crit Care Lond Engl. 2019; 23: 426https://doi.org/10.1186/s13054-019-2671-7
        • Lavani R.
        • Chang W.T.
        • Anderson T.
        • et al.
        Altering CO2 during reperfusion of ischemic cardiomyocytes modifies mitochondrial oxidant injury.
        Crit Care Med. 2007; 35: 1709-1716https://doi.org/10.1097/01.CCM.0000269209.53450.EC
        • Schneider A.G.
        • Eastwood G.M.
        • Bellomo R.
        • et al.
        Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest.
        Resuscitation. 2013; 84: 927-934https://doi.org/10.1016/j.resuscitation.2013.02.014
        • Roberts B.W.
        • Kilgannon J.H.
        • Chansky M.E.
        • Mittal N.
        • Wooden J.
        • Trzeciak S.
        Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome.
        Circulation. 2013; 127: 2107-2113https://doi.org/10.1161/CIRCULATIONAHA.112.000168
        • Luyt C.E.
        • Bréchot N.
        • Demondion P.
        • et al.
        Brain injury during venovenous extracorporeal membrane oxygenation.
        Intensive Care Med. 2016; 42: 897-907https://doi.org/10.1007/s00134-016-4318-3
        • Vereczki V.
        • Martin E.
        • Rosenthal R.E.
        • Hof P.R.
        • Hoffman G.E.
        • Fiskum G.
        Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death.
        J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2006; 26: 821-835https://doi.org/10.1038/sj.jcbfm.9600234
        • Dell’Anna A.M.
        • Lamanna I.
        • Vincent J.L.
        • Taccone F.S.
        How much oxygen in adult cardiac arrest?.
        Crit Care Lond Engl. 2014; 18: 555https://doi.org/10.1186/s13054-014-0555-4
        • Hazelton J.L.
        • Balan I.
        • Elmer G.I.
        • et al.
        Hyperoxic reperfusion after global cerebral ischemia promotes inflammation and long-term hippocampal neuronal death.
        J Neurotrauma. 2010; 27: 753-762https://doi.org/10.1089/neu.2009.1186
        • Roberts B.W.
        • Kilgannon J.H.
        • Hunter B.R.
        • et al.
        Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: prospective multicenter protocol-directed cohort study.
        Circulation. 2018; 137: 2114-2124https://doi.org/10.1161/CIRCULATIONAHA.117.032054
        • Bellomo R.
        • Bailey M.
        • Eastwood G.M.
        • et al.
        Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest.
        Crit Care Lond Engl. 2011; 15: R90https://doi.org/10.1186/cc10090
        • Chang W.T.
        • Wang C.H.
        • Lai C.H.
        • et al.
        Optimal arterial blood oxygen tension in the early postresuscitation phase of extracorporeal cardiopulmonary resuscitation: A 15-Year retrospective observational study.
        Crit Care Med. 2019; 47: 1549-1556https://doi.org/10.1097/CCM.0000000000003938
        • Munshi L.
        • Kiss A.
        • Cypel M.
        • Keshavjee S.
        • Ferguson N.D.
        • Fan E.
        Oxygen thresholds and mortality during extracorporeal life support in adult patients.
        Crit Care Med. 2017; 45: 1997-2005https://doi.org/10.1097/CCM.0000000000002643
        • Halter M.
        • Jouffroy R.
        • Saade A.
        • Philippe P.
        • Carli P.
        • Vivien B.
        Association between hyperoxemia and mortality in patients treated by eCPR after out-of-hospital cardiac arrest.
        Am J Emerg Med. 2020; 38: 900-905https://doi.org/10.1016/j.ajem.2019.07.008
        • Panchal A.R.
        • Bartos J.A.
        • Cabañas J.G.
        • et al.
        Part 3: adult basic and advanced life support: 2020 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care.
        Circulation. 2020; 142: S366-S468https://doi.org/10.1161/CIR.0000000000000916
        • Soar J.
        • Böttiger B.W.
        • Carli P.
        • et al.
        European Resuscitation Council Guidelines 2021: Adult advanced life support.
        Resuscitation. 2021; 161: 115-151https://doi.org/10.1016/j.resuscitation.2021.02.010
        • Olasveengen T.M.
        • Wik L.
        • Sunde K.
        • Steen P.A.
        Outcome when adrenaline (epinephrine) was actually given vs. not given - post hoc analysis of a randomized clinical trial.
        Resuscitation. 2012; 83: 327-332https://doi.org/10.1016/j.resuscitation.2011.11.011
        • Hagihara A.
        • Hasegawa M.
        • Abe T.
        • Nagata T.
        • Wakata Y.
        • Miyazaki S.
        Prehospital epinephrine use and survival among patients with out-of-hospital cardiac arrest.
        JAMA. 2012; 307: 1161-1168https://doi.org/10.1001/jama.2012.294
        • Perkins G.D.
        • Ji C.
        • Deakin C.D.
        • et al.
        A randomized trial of epinephrine in out-of-hospital cardiac arrest.
        N Engl J Med. 2018; 379: 711-721https://doi.org/10.1056/NEJMoa1806842
        • Hansen M.
        • Schmicker R.H.
        • Newgard C.D.
        • et al.
        Time to epinephrine administration and survival from nonshockable out-of-hospital cardiac arrest among children and adults.
        Circulation. 2018; 137: 2032-2040https://doi.org/10.1161/CIRCULATIONAHA.117.033067
        • Enzan N.
        • Hiasa K.I.
        • Ichimura K.
        • et al.
        Delayed administration of epinephrine is associated with worse neurological outcomes in patients with out-of-hospital cardiac arrest and initial pulseless electrical activity: insight from the nationwide multicentre observational JAAM-OHCA (Japan Association for Acute Medicine) registry.
        Eur Heart J Acute Cardiovasc Care. 2022; 11: 389-396https://doi.org/10.1093/ehjacc/zuac026
        • Bartos J.A.
        • Voicu S.
        • Matsuura T.R.
        • et al.
        Role of epinephrine and extracorporeal membrane oxygenation in the management of ischemic refractory ventricular fibrillation: a randomized trial in pigs.
        JACC Basic Transl Sci. 2017; 2: 244-253https://doi.org/10.1016/j.jacbts.2017.02.003
        • Larsson P.T.
        • Wallén N.H.
        • Egberg N.
        • Hjemdahl P.
        Alpha-adrenoceptor blockade by phentolamine inhibits adrenaline-induced platelet activation in vivo without affecting resting measurements.
        Clin Sci Lond Engl. 1979. 1992,; 82: 369-376https://doi.org/10.1042/cs0820369
        • Ristagno G.
        • Sun S.
        • Tang W.
        • Castillo C.
        • Weil M.H.
        Effects of epinephrine and vasopressin on cerebral microcirculatory flows during and after cardiopulmonary resuscitation.
        Crit Care Med. 2007; 35: 2145-2149https://doi.org/10.1097/01.ccm.0000280427.76175.d2
        • Ristagno G.
        • Tang W.
        • Huang L.
        • et al.
        Epinephrine reduces cerebral perfusion during cardiopulmonary resuscitation.
        Crit Care Med. 2009; 37: 1408-1415https://doi.org/10.1097/CCM.0b013e31819cedc9
        • Burnett A.M.
        • Segal N.
        • Salzman J.G.
        • McKnite M.S.
        • Frascone R.J.
        Potential negative effects of epinephrine on carotid blood flow and ETCO2 during active compression-decompression CPR utilizing an impedance threshold device.
        Resuscitation. 2012; 83: 1021-1024https://doi.org/10.1016/j.resuscitation.2012.03.018
        • Nosrati R.
        • Lin S.
        • Mohindra R.
        • Ramadeen A.
        • Toronov V.
        • Dorian P.
        Study of the effects of epinephrine on cerebral oxygenation and metabolism during cardiac arrest and resuscitation by hyperspectral near-infrared spectroscopy.
        Crit Care Med. 2019; 47: e349-e357https://doi.org/10.1097/CCM.0000000000003640
        • Johansson J.
        • Gedeborg R.
        • Basu S.
        • Rubertsson S.
        Increased cortical cerebral blood flow by continuous infusion of adrenaline (epinephrine) during experimental cardiopulmonary resuscitation.
        Resuscitation. 2003; 57: 299-307https://doi.org/10.1016/s0300-9572(03)00031-5
        • Donker D.W.
        • Brodie D.
        • Henriques J.P.S.
        • Broomé M.
        Left ventricular unloading during veno-arterial ECMO: a review of percutaneous and surgical unloading interventions.
        Perfusion. 2019; 34: 98-105https://doi.org/10.1177/0267659118794112
        • Lee Y.I.
        • Ko R.E.
        • Yang J.H.
        • Cho Y.H.
        • Ahn J.
        • Ryu J.A.
        Optimal mean arterial pressure for favorable neurological outcomes in survivors after extracorporeal cardiopulmonary resuscitation.
        J Clin Med. 2022; 11: 290https://doi.org/10.3390/jcm11020290
        • Luo Y.
        • Fritz C.
        • Hammache N.
        • et al.
        Low versus standard-blood-flow reperfusion strategy in a pig model of refractory cardiac arrest resuscitated with Extra Corporeal Membrane Oxygenation.
        Resuscitation. 2018; 133: 12-17https://doi.org/10.1016/j.resuscitation.2018.09.014
        • Fritz C.
        • Kimmoun A.
        • Vanhuyse F.
        • et al.
        High versus low blood-pressure target in experimental ischemic prolonged cardiac arrest treated with extra corporeal life support.
        Shock Augusta Ga. 2017; 47: 759-764https://doi.org/10.1097/SHK.0000000000000793
        • Klein T.
        • Grandmougin D.
        • Liu Y.
        • et al.
        Comparison of vasopressin versus norepinephrine in a Pig model of refractory cardiogenic shock complicated by cardiac arrest and resuscitated with Veno-arterial ECMO.
        Shock Augusta Ga. 2021; 56: 473-478https://doi.org/10.1097/SHK.0000000000001747
        • Nolan J.P.
        • Sandroni C.
        • Böttiger B.W.
        • et al.
        European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care.
        Intensive Care Med. 2021; 47: 369-421https://doi.org/10.1007/s00134-021-06368-4
        • Huang M.
        • Shoskes A.
        • Migdady I.
        • et al.
        Does targeted temperature management improve neurological outcome in extracorporeal cardiopulmonary resuscitation (ECPR)?.
        J Intensive Care Med. 2022; 37: 157-167https://doi.org/10.1177/08850666211018982
        • Choudhary R.C.
        • Shoaib M.
        • Sohnen S.
        • et al.
        Pharmacological approach for neuroprotection after cardiac arrest-A narrative review of current therapies and future neuroprotective cocktail.
        Front Med. 2021; 8: 636651https://doi.org/10.3389/fmed.2021.636651
        • Katz A.
        • Brosnahan S.B.
        • Papadopoulos J.
        • Parnia S.
        • Lam J.Q.
        Pharmacologic neuroprotection in ischemic brain injury after cardiac arrest.
        Ann N Y Acad Sci. 2022; 1507: 49-59https://doi.org/10.1111/nyas.14613
        • Zotzmann V.
        • Rilinger J.
        • Lang C.N.
        • et al.
        Epinephrine, inodilator, or no inotrope in venoarterial extracorporeal membrane oxygenation implantation: a single-center experience.
        Crit Care Lond Engl. 2019; 23: 320https://doi.org/10.1186/s13054-019-2605-4
        • Bělohlávek J.
        • Mlček M.
        • Huptych M.
        • et al.
        Coronary versus carotid blood flow and coronary perfusion pressure in a pig model of prolonged cardiac arrest treated by different modes of venoarterial ECMO and intraaortic balloon counterpulsation.
        Crit Care Lond Engl. 2012; 16: R50https://doi.org/10.1186/cc11254
        • Wollborn J.
        • Steiger C.
        • Doostkam S.
        • et al.
        Carbon monoxide exerts functional neuroprotection after cardiac arrest using extracorporeal resuscitation in pigs.
        Crit Care Med. 2020; 48: e299-e307https://doi.org/10.1097/CCM.0000000000004242
        • Ölander C.H.
        • Vikholm P.
        • Schiller P.
        • Hellgren L.
        End-tidal carbon dioxide impacts brain and kidney injury in experimental extracorporeal cardiopulmonary resuscitation (ECPR).
        Shock Augusta Ga. 2021; 55: 563-569https://doi.org/10.1097/SHK.0000000000001645
        • Ölander C.H.
        • Vikholm P.
        • Lindblom R.
        • Schiller P.
        • Hellgren L.
        Extracorporeal cardiopulmonary resuscitation guided by end-tidal carbon dioxide-a porcine model.
        J Cardiovasc Transl Res. 2022; 15: 291-301https://doi.org/10.1007/s12265-022-10210-7