Advertisement

Drones delivering automated external defibrillators: A new strategy to improve the prognosis of out-of-hospital cardiac arrest

      Abstract

      Background

      Out-of-hospital cardiac arrest (OHCA) is a serious threat to human life and health, characterized by high morbidity and mortality. However, given the limitations of the current emergency medical system (EMS), it is difficult to immediately treat patients who experience OHCA. It is well known that rapid defibrillation after cardiac arrest is essential for improving the survival rate of OHCA, yet automated external defibrillators (AED) are difficult to obtain in a timely manner.

      Objective

      This review illustrates the feasibility and advantages of AED delivery by drones by surveying current studies on drones, explains that drones are a new strategy in OHCA, and finally proposes novel strategies to address existing problems with drone systems.

      Results

      The continuous development of drone technology has been beneficial for patients who experience OHCA, as drones have demonstrated powerful capabilities to provide rapid delivery of AED. Drones have great advantages over traditional EMS, and the delivery of AED by drones for patients with OHCA is a new strategy. However, the application of this new strategy in real life still has many challenges.

      Conclusion

      Drones are promising and innovative tools. Many studies have demonstrated that AED delivery by drones is feasible and cost-effective; however, as a new strategy to improve the survival rate of OHCA patients, there remain problems to be solved. In the future, more in-depth investigations need to be conducted.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Resuscitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kiguchi T.
        • Okubo M.
        • Nishiyama C.
        • Maconochie I.
        • Ong M.E.H.
        • Kern K.B.
        • et al.
        Out-of-hospital cardiac arrest across the world: First report from the International Liaison Committee on Resuscitation (ILCOR).
        Resuscitation. 2020; 152: 39-49
        • Gräsner J.-T.
        • Herlitz J.
        • Tjelmeland I.B.M.
        • Wnent J.
        • Masterson S.
        • Lilja G.
        • et al.
        European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe.
        Resuscitation. 2021; 161: 61-79
        • Virani S.S.
        • Alonso A.
        • Aparicio H.J.
        • Benjamin E.J.
        • Bittencourt M.S.
        • Callaway C.W.
        • et al.
        Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association.
        Circulation. 2021; 143: e254-e743
        • Berdowski J.
        • Berg R.A.
        • Tijssen J.G.P.
        • Koster R.W.
        Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies.
        Resuscitation. 2010; 81: 87
        • Ong M.E.
        • Shin S.D.
        • De Souza N.N.
        • et al.
        Outcomes for out-of-hospital cardiac arrests across 7 countries in Asia: The Pan Asian Resuscitation Outcomes Study (PAROS).
        Resuscitation. 2015; 96: 100-108
      1. American Heart Association. Every Second Counts: Rural and Community Access to Emergency Devices Program. https://www.heart.org/idc/groups/heart-public/@wcm/@adv/documents/downloadable/ucm_472102.pdf; 2015.

        • Ramiro J.I.
        • Kumar A.
        Updates on management of anoxic brain injury after cardiac arrest.
        Mo Med. 2015; 112: 136-141
        • Mulder M.
        • Geocadin R.G.
        Neurology of cardiopulmonary resuscitation.
        Handb Clin Neurol. 2017; 141: 593-617https://doi.org/10.1016/B978-0-444-63599-0.00032-6
        • Elmer J.
        • Callaway C.W.
        The brain after cardiac arrest.
        Semin Neurol. 2017; 37: 19-24https://doi.org/10.1055/s-0036-1597833
        • Medicherla C.B.
        • Lewis A.
        The critically ill brain after cardiac arrest.
        Ann N Y Acad Sci. 2022 Jan; 1507: 12-22https://doi.org/10.1111/nyas.14423
        • Welbourn C.
        • Efstathiou N.
        How does the length of cardiopulmonary resuscitation affect brain damage in patients surviving cardiac arrest? A systematic review.
        Scand J Trauma Resusc Emerg Med. 2018; 26: 77https://doi.org/10.1186/s13049-018-0476-3
        • Kleinman M.E.
        • Goldberger Z.D.
        • Rea T.
        • Swor R.A.
        • Bobrow B.J.
        • Brennan E.E.
        • et al.
        American Heart Association Focused Update on Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
        Circulation. 2017; 2018: 137
        • Gino B.
        • Williams K.L.
        • Neilson C.S.
        • d'Entremont P.
        • Dubrowski A.
        • Renouf T.S.
        The PHOENIX: Design and development of a three-dimensional-printed drone prototype and corresponding simulation scenario based on the management of cardiac arrest.
        Cureus. 2022; 14: e21594
        • Estner H.L.
        • Günzel C.
        • Ndrepepa G.
        • William F.
        • Blaumeiser D.
        • Rupprecht B.
        • et al.
        Outcome after out-of-hospital cardiac arrest in a physician-staffed emergency medical system according to the Utstein style.
        Am Heart J. 2007; 153: 792-799
        • Perkins G.D.
        • Handley A.J.
        • Koster R.W.
        • Castrén M.
        • Smyth M.A.
        • Olasveengen T.
        • et al.
        European Resuscitation Council Guidelines for Resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation.
        Resuscitation. 2015; 95: 81-99
        • Olasveengen T.M.
        • Semeraro F.
        • Ristagno G.
        • Castren M.
        • Handley A.
        • Kuzovlev A.
        • Monsieurs K.G.
        • Raffay V.
        • Smyth M.
        • Soar J.
        • Svavarsdottir H.
        • Perkins G.D.
        European Resuscitation Council Guidelines 2021: Basic Life Support.
        Resuscitation. 2021 Apr; 161: 98-114https://doi.org/10.1016/j.resuscitation.2021.02.009
        • Rosser Jr., J.C.
        • Vignesh V.
        • Terwilliger B.A.
        • Parker B.C.
        Surgical and medical applications of drones: A comprehensive review.
        Jsls. 2018; : 22
        • Bhatt K.
        • Pourmand A.
        • Sikka N.
        Targeted applications of unmanned aerial vehicles (drones) in telemedicine.
        Telemed J E Health. 2018; 24: 833-838
        • Seguin C.
        • Blaquière G.
        • Loundou A.
        • Michelet P.
        • Markarian T.
        Unmanned aerial vehicles (drones) to prevent drowning.
        Resuscitation. 2018; 127
        • Panchal A.R.
        • Bartos J.A.
        • Cabañas J.G.
        • Donnino M.W.
        • Drennan I.R.
        • Hirsch K.G.
        • et al.
        Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
        Circulation. 2020; 142: S366-S468
        • Weisfeldt M.L.
        • Sitlani C.M.
        • Ornato J.P.
        • Rea T.
        • Aufderheide T.P.
        • Davis D.
        • et al.
        Survival after application of automatic external defibrillators before arrival of the emergency medical system: Evaluation in the resuscitation outcomes consortium population of 21 million.
        J Am Coll Cardiol. 2010; 55: 1713-1720
        • Sun C.L.F.
        • Demirtas D.
        • Brooks S.C.
        • Morrison L.J.
        • Chan T.C.Y.
        Overcoming spatial and temporal barriers to public access defibrillators via optimization.
        J Am Coll Cardiol. 2016; 68: 836-845
        • Rosamond W.D.
        • Johnson A.M.
        • Bogle B.M.
        • Arnold E.
        • Cunningham C.J.
        • Picinich M.
        • et al.
        Drone delivery of an automated external defibrillator.
        N Engl J Med. 2020; 383: 1186-1188
        • Nichol G.
        • Thomas E.
        • Callaway C.W.
        • Hedges J.
        • Powell J.L.
        • Aufderheide T.P.
        • et al.
        Regional variation in out-of-hospital cardiac arrest incidence and outcome.
        JAMA. 2008; 300: 1423-1431
        • Mermiri M.I.
        • Mavrovounis G.A.
        • Pantazopoulos I.N.
        Drones for Automated external defibrillator delivery: Where do we stand?.
        J Emerg Med. 2020; 59: 660-667
        • Johnson A.M.
        • Cunningham C.J.
        • Arnold E.
        • Rosamond W.D.
        • Zègre-Hemsey J.K.
        Impact of using drones in emergency medicine: What does the future hold?.
        Open Access Emerg Med. 2021; 13: 487-498
        • Blom J.
        Unmanned aerial systems: A historical perspective.
        Combat Studies Institute Press, Kansas2010
        • Prisacariu V.
        The history and the evolution of UAVs from the beginning till the 70s.
        J Defense Resour Manage. 2017; 8: 181-189
        • Haidari L.A.
        • Brown S.T.
        • Ferguson M.
        • Bancroft E.
        • Spiker M.
        • Wilcox A.
        • et al.
        The economic and operational value of using drones to transport vaccines.
        Vaccine. 2016; 34: 4062-4067
        • Zègre-Hemsey J.K.
        • Bogle B.
        • Cunningham C.J.
        • Snyder K.
        • Rosamond W.
        Delivery of automated external defibrillators (AED) by drones: Implications for emergency cardiac care.
        Curr Cardiovasc Risk Rep. 2018; : 12
        • Balasingam M.
        Drones in medicine—The rise of the machines.
        Int J Clin Pract. 2017; 71: e12989
        • Hart A.
        • Chai P.R.
        • Griswold M.K.
        • Lai J.T.
        • Boyer E.W.
        • Broach J.
        Acceptability and perceived utility of drone technology among emergency medical service responders and incident commanders for mass casualty incident management.
        Am J Disaster Med. 2017; 12: 261-265
        • Bonny A.
        • Noah D.N.
        • Ngantcha M.
        • Ateh R.
        • Saka C.
        • Wa J.
        • et al.
        Epidemiology of sudden cardiac death in Cameroon: Rationale and design of the Douala-SUD survey.
        Arch Cardiovasc Dis. 2014; 107: 433-442
        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • Benjamin E.J.
        • Berry J.D.
        • Blaha M.J.
        • et al.
        Heart disease and stroke statistics–2014 update: a report from the American Heart Association.
        Circulation. 2014; 129: e28-e292
        • Jouven X.
        • Bougouin W.
        • Karam N.
        • Marijon E.
        Epidemiology of sudden cardiac death: Data from the Paris-Sudden Death Expertise Center registry.
        Rev Prat. 2015; 65: 916-918
        • Marijon E.
        • Bougouin W.
        • Cariou A.
        • Jost D.
        • Carli P.
        • Combes A.
        • et al.
        Sudden death expertise centre: A multi disciplinary approach for sudden death.
        Arch Cardiovasc Dis. 2011; 104: 555-557
        • Luc G.
        • Baert V.
        • Escutnaire J.
        • Genin M.
        • Vilhelm C.
        • Di Pompéo C.
        • et al.
        Epidemiology of out-of-hospital cardiac arrest: A French national incidence and mid-term survival rate study.
        Anaesth Crit Care Pain Med. 2019; 38: 131-135
        • Van de Voorde P.
        • Gautama S.
        • Momont A.
        • Ionescu C.M.
        • De Paepe P.
        • Fraeyman N.
        The drone ambulance [A-UAS]: golden bullet or just a blank?.
        Resuscitation. 2017; 116: 46-48
        • Pulver A.
        • Wei R.
        • Mann C.
        Locating AED Enabled Medical Drones to Enhance Cardiac Arrest Response Times.
        Prehosp Emerg Care. 2016; 20: 378-389
        • Vögele A.
        • Ströhle M.
        • Paal P.
        • Rauch S.
        • Brugger H.
        Can drones improve survival rates in mountain areas, providing automated external defibrillators?.
        Resuscitation. 2020; 146: 277-278
        • Zègre-Hemsey J.K.
        • Grewe M.E.
        • Johnson A.M.
        • Arnold E.
        • Cunningham C.J.
        • Bogle B.M.
        • et al.
        Delivery of automated external defibrillators via drones in simulated cardiac arrest: Users' experiences and the human-drone interaction.
        Resuscitation. 2020; 157: 83-88
        • Baumgarten M.C.
        • Röper J.
        • Hahnenkamp K.
        • Thies K.C.
        Drones delivering automated external defibrillators-Integrating unmanned aerial systems into the chain of survival: A simulation study in rural Germany.
        Resuscitation. 2022; 172: 139-145
        • Cheskes S.
        • McLeod S.L.
        • Nolan M.
        • Snobelen P.
        • Vaillancourt C.
        • Brooks S.C.
        • et al.
        Improving access to automated external defibrillators in rural and remote settings: A drone delivery feasibility study.
        J Am Heart Assoc. 2020; 9: e016687
        • Schierbeck S.
        • Hollenberg J.
        • Nord A.
        • Svensson L.
        • Nordberg P.
        • Ringh M.
        • et al.
        Automated external defibrillators delivered by drones to patients with suspected out-of-hospital cardiac arrest.
        Eur Heart J. 2022; 43: 1478-1487
        • Mackle C.
        • Bond R.
        • Torney H.
        • McBride R.
        • McLaughlin J.
        • Finlay D.
        • et al.
        A data-driven simulator for the strategic positioning of aerial ambulance drones reaching out-of-hospital cardiac arrests: A genetic algorithmic approach.
        IEEE J Transl Eng Health Med. 2020; 8: 1900410
        • Claesson A.
        • Fredman D.
        • Svensson L.
        • Ringh M.
        • Hollenberg J.
        • Nordberg P.
        • et al.
        Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest.
        Scand J Trauma Resusc Emerg Med. 2016; 24: 124
      2. Everdrone (Jan 2022). For the first time in medical history, an autonomous drone helps save the life of a cardiac arrest patient. Available from: https://everdrone.com/news/2022/01/04/for-the-first-time-in-medical-history-an-autonomous-drone-helps-save-the-life-of-a-cardiac-arrest-patient/ [last accessed 17th January 2022].

        • Chu J.
        • Leung K.H.B.
        • Snobelen P.
        • Nevils G.
        • Drennan I.R.
        • Cheskes S.
        • et al.
        Machine learning-based dispatch of drone-delivered defibrillators for out-of-hospital cardiac arrest.
        Resuscitation. 2021; 162: 120-127
        • Leung K.H.B.
        • Grunau B.
        • Al Assil R.
        • Heidet M.
        • Liang L.D.
        • Deakin J.
        • et al.
        Incremental gains in response time with varying base location types for drone-delivered automated external defibrillators.
        Resuscitation. 2022; 174: 24-30
        • Sanfridsson J.
        • Sparrevik J.
        • Hollenberg J.
        • Nordberg P.
        • Djärv T.
        • Ringh M.
        • et al.
        Drone delivery of an automated external defibrillator - a mixed method simulation study of bystander experience.
        Scand J Trauma Resusc Emerg Med. 2019; 27: 40
        • Huig I.C.
        • Boonstra L.
        • Gerritsen P.C.
        • Hoeks S.E.
        The availability, condition and employability of automated external defibrillators in large city centres in the Netherlands.
        Resuscitation. 2014; 85: 1324-1329
        • Chrisinger B.W.
        • Grossestreuer A.V.
        • Laguna M.C.
        • Griffis H.M.
        • Branas C.C.
        • Wiebe D.J.
        • et al.
        Characteristics of automated external defibrillator coverage in Philadelphia, PA, based on land use and estimated risk.
        Resuscitation. 2016; 109: 9-15
        • Bauer J.
        • Moormann D.
        • Strametz R.
        • Groneberg D.A.
        Development of unmanned aerial vehicle (UAV) networks delivering early defibrillation for out-of-hospital cardiac arrests (OHCA) in areas lacking timely access to emergency medical services (EMS) in Germany: a comparative economic study.
        BMJ Open. 2021; 11: e043791
        • Derkenne C.
        • Jost D.
        • Miron De L'Espinay A.
        • Corpet P.
        • Frattini B.
        • Hong V.
        • et al.
        Automatic external defibrillator provided by unmanned aerial vehicle (drone) in Greater Paris: A real world-based simulation.
        Resuscitation. 2021; 162: 259-265
        • Boutilier J.J.
        • Brooks S.C.
        • Janmohamed A.
        • Byers A.
        • Buick J.E.
        • Zhan C.
        • et al.
        Optimizing a drone network to deliver automated external defibrillators.
        Circulation. 2017; 135: 2454-2465
        • Bogle B.M.
        • Rosamond W.D.
        • Snyder K.T.
        • Zègre-Hemsey J.K.
        The case for drone-assisted emergency response to cardiac arrest: An optimized statewide deployment approach.
        N C Med J. 2019; 80: 204-212
        • Boucher P.
        ‘You wouldn’t have your granny using them’: Drawing boundaries between acceptable and unacceptable applications of civil drones.
        Sci Eng Ethics. 2016; 22: 1391-1418
        • Ryan J.P.
        The feasibility of medical unmanned aerial systems in suburban areas.
        Am J Emerg Med. 2021; 50: 532-545
        • Choi D.S.
        • Hong K.J.
        • Shin S.D.
        • Lee C.G.
        • Kim T.H.
        • Cho Y.
        • et al.
        Effect of topography and weather on delivery of automatic electrical defibrillator by drone for out-of-hospital cardiac arrest.
        Sci Rep. 2021; 11: 24195