Advertisement
Clinical paper| Volume 163, P116-123, June 2021

Download started.

Ok

Effect of inspired gas temperature on lung mechanics and gas exchange in neonates in normothermia or therapeutic hypothermia

  • Giulia Regiroli
    Affiliations
    Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France

    Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
    Search for articles by this author
  • Barbara Loi
    Affiliations
    Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France
    Search for articles by this author
  • Feriel Fortas
    Affiliations
    Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France

    Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
    Search for articles by this author
  • Roberta Centorrino
    Affiliations
    Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France

    Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
    Search for articles by this author
  • Fabio Mosca
    Affiliations
    Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
    Search for articles by this author
  • Daniele De Luca
    Correspondence
    Corresponding author at: Service de Pédiatrie et Réanimation Néonatale, Hôpital “A. Béclère” – GHU Paris Saclay, APHP, 157 rue de la Porte de Trivaux, 92140 Clamart (Paris-IDF), France.
    Affiliations
    Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France

    Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
    Search for articles by this author

      Abstract

      Background

      Respiratory critical care guidelines suggest heating the air/oxygen mixture but do not recommend a specific temperature target. We aimed to clarify if the inspired gas temperature influences lung mechanics and gas exchange in intubated patients treated with whole body hypothermia (WBH) or normothermia (NT).

      Methods

      Prospective cohort study enrolling neonates ventilated for perinatal asphyxia resuscitation (no lung disease) or acute hypoxemic respiratory failure. Patients were divided between those ventilated in NT or WBH. Compliance (Cdyn), airway resistances (Raw), oxygenation index (OI), PaO2/FiO2, A-a gradient, a/A ratio, estimated alveolar dead space (VDalv), ventilatory index (VI) and CO2 production (VCO2) were registered at the study beginning (inspired gas at 37°C). Then, gas temperature was decreased (32 °C) and variables were recorded again after 1 and 3 h. Data were analysed with univariate and multivariate repeated measures-ANOVA.

      Results

      Cdyn, Raw, OI, PaO2/FiO2, A-a gradient, a/A ratio, VDalv, VI and VCO2 are similar between WBH and NT at any timepoint (between-subjects effect); these results do not change adjusting for the presence of respiratory failure. When this is considered in multivariate ANOVA (within-subjects effect), Cdyn (p = 0.016), Raw (p = 0.034) and VDalv (p < 0.001) were worse in patients with respiratory failure than in those without lung disease.

      Conclusions

      Decreasing the gas temperature from 37 °C to 32 °C for 3 h does not change lung mechanics and gas exchange, neither in neonates with, nor in those without respiratory failure and in those treated in NT or WBH. These findings fill a knowledge gap regarding the effect of inspired gas temperature during WBH: they may inform future respiratory critical care guidelines.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Resuscitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Donnino M.W.
        • Andersen L.W.
        • Berg K.M.
        • et al.
        ILCOR ALS Task Force. Temperature management after cardiac arrest: an advisory statement by the advanced life support task force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation.
        Resuscitation. 2016; 98: 97-104
        • Nolan J.P.
        • Soar J.
        • Cariou A.
        • et al.
        European Resuscitation Council and European Society of Intensive Care Medicine 2015 guidelines for post-resuscitation care.
        Intensive Care Med. 2015; 41: 2039-2056
        • American Academy of Pediatrics
        Committee on fetus and newborn. Hypothermia and neonatal encephalopathy.
        Pediatrics. 2014; 133: 1146-1150
        • Ball M.K.
        • Hillman N.H.
        • Kallapur S.G.
        • Polglase G.R.
        • Jobe A.H.
        • Pillow J.J.
        Body temperature effects on lung injury in ventilated preterm lambs.
        Resuscitation. 2010; 81: 749-754
        • Autilio C.
        • Echaide M.
        • De Luca D.
        • Pérez-Gil J.
        Controlled hypothermia may improve surfactant function in asphyxiated neonates with or without meconium aspiration syndrome.
        PLoS One. 2018; 13: e0192295https://doi.org/10.1371/journal.pone.0192295
        • Autilio C.
        • Echaide M.
        • Cruz A.
        • et al.
        Molecular and biophysical mechanisms behind the enhancement of lung surfactant function during controlled therapeutic hypothermia.
        Sci Rep. 2021; 11: 728https://doi.org/10.1038/s41598-020-79025-3
        • De Luca D.
        • Vázquez-Sánchez S.
        • Minucci A.
        • et al.
        Effect of whole body hypothermia on inflammation and surfactant function in asphyxiated neonates.
        Eur Respir J. 2014; 44: 1708-1710
        • Hong S.-B.
        • Koh Y.
        • Lee I.-C.
        • et al.
        Induced hypothermia as a new approach to lung rest for the acutely injured lung.
        Crit Care Med. 2005; 33: 2049-2055
        • Chiou S.-Y.
        • Lee Y.-S.
        • Jeng M.-J.
        • Tsao P.-C.
        • Soong W.-J.
        Moderate hypothermia attenuates oxidative stress injuries in alveolar epithelial A549 cells.
        Exp Lung Res. 2013; 39: 217-228
        • Autilio C.
        • Shankar-Aguilera S.
        • Minucci A.
        • Touqui L.
        • De Luca D.
        Effect of cooling on lung secretory phospholipase A2 activity in vitro, ex vivo, and in vivo.
        Am J Physiol Lung Cell Mol Physiol. 2019; 316: L498-L505
        • Duan M.
        • Berra L.
        • Kumar A.
        • et al.
        Use of hypothermia to allow low-tidal-volume ventilation in a patient with ARDS.
        Respir Care. 2011; 56: 1956-1958
        • Dhillon G.
        • Kamat A.S.
        • Mulavisala K.P.
        Induced hypothermia for trauma-related ARDS.
        Indian J Crit Care Med. 2015; 19: 353-355
        • Pietrini D.
        • Pennisi M.
        • Vitale F.
        • et al.
        Rescue hypothermia for refractory hypercapnia.
        Eur J Pediatr. 2012; 171: 1855-1857
        • Autilio C.
        • Echaide M.
        • Dell’Orto V.
        • Perez-Gil J.
        • De Luca D.
        Effect of whole body hypothermia on surfactant function when amniotic fluid is meconium stained.
        Ther Hypothermia Temp Manage. 2017; 10: 186-189
        • De Luca D.
        • Minucci A.
        • Zecca E.
        • et al.
        Bile acids cause secretory phospholipase A2 activity enhancement, revertible by exogenous surfactant administration.
        Intensive Care Med. 2009; 35: 321-326
        • De Luca D.
        • Minucci A.
        • Tripodi D.
        • et al.
        Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates.
        Intensive Care Med. 2011; 37: 1158-1165
        • De Luca D.
        • Tingay D.G.
        • van Kaam A.
        • et al.
        Hypothermia and Meconium Aspiration Syndrome: International Multicenter Retrospective Cohort Study.
        Am J Respir Crit Care Med. 2016; 194: 381-384
        • Restrepo R.D.
        • Walsh B.K.
        Humidification During Invasive and Noninvasive Mechanical Ventilation: 2012.
        Respir Care. 2012; 57: 782-788
        • Lellouche F.
        • Qader S.
        • Taille S.
        • Lyazidi A.
        • Brochard L.
        Under-humidification and over-humidification during moderate induced hypothermia with usual devices.
        Intensive Care Med. 2006; 32: 1014-1021
        • Tanaka S.
        • Iwata S.
        • Kinoshita M.
        • et al.
        Use of normothermic default humidifier settings causes excessive humidification of respiratory gases during therapeutic hypothermia.
        Ther Hypothermia Temp Manage. 2016; 6: 180-188
        • Dell’Orto V.
        • Bourgeois-Nicolaos N.
        • Rouard C.
        • et al.
        Cell count analysis from nonbronchoscopic bronchoalveolar lavage in preterm infants.
        J Pediatr. 2018; 200 (e2): 30-37
        • Azzopardi D.V.
        • Strohm B.
        • Edwards A.D.
        • et al.
        Moderate hypothermia to treat perinatal asphyxial encephalopathy.
        N Engl J Med. 2009; 361: 1349-1358
        • Raschetti R.
        • Centorrino R.
        • Letamendia E.
        • Benachi A.
        • Marfaing-Koka A.
        • Luca D.D.
        Estimation of early life endogenous surfactant pool and CPAP failure in preterm neonates with RDS.
        Respir Res. 2019; 20: 75https://doi.org/10.1186/s12931-019-1040-z
        • De Luca D.
        • van Kaam A.H.
        • Tingay D.G.
        • et al.
        The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity.
        Lancet Respir Med. 2017; 5: 657-666
        • De Luca D.
        • Baroni S.
        • Vento G.
        • et al.
        Secretory phospholipase A2 and neonatal respiratory distress: pilot study on broncho-alveolar lavage.
        Intensive Care Med. 2008; 34: 1858-1864
      1. https://techweb.stryker.com/Gaymar/TMP/Medi-Term/MTA6900/100974000.pdf, n.d. [accessed 07.02.21].

        • Schulze A.
        Respiratory gas conditioning in infants with an artificial airway.
        Semin Neonatol. 2002; 7: 369-377
      2. ISO 8185:2007. Respiratory tract humidifiers for medical use. Particular requirements for respiratory humidification systems, 2007. Available at: www.iso.org/iso/iso_catalogue/catalogue_?csnumber=tc/catalogue_detail.htm=38527; n.d. [accessed 07.02.21].

      3. https://resources.fphcare.com/content/mr850-respiratory-humidifier-user-instructions-ui-185042343.pdf; n.d. [accessed 07.02.21].

        • De Luca D.
        • Piastra M.
        • Conti G.
        Technical problems with dynamic compliance evaluation in neonates and infants.
        Intensive Care Med. 2012; 38: 1082-1083
        • Hardman J.G.
        • Aitkenhead A.R.
        Estimating alveolar dead space from the arterial to end-tidal CO2 gradient: a modeling analysis.
        Anesth Analg. 2003; 97: 1846-1851
        • Prakash O.
        • Jonson B.
        • Bos E.
        • Meij S.
        • Hugenholtz P.G.
        • Hekman W.
        Cardiorespiratory and metabolic effects of profound hypothermia.
        Crit Care Med. 1978; 6: 340-346
        • Groenendaal F.
        • De Vooght K.M.K.
        • van Bel F.
        Blood gas values during hypothermia in asphyxiated term neonates.
        Pediatrics. 2009; 123: 170-172
        • Kessler V.
        • Guttmann J.
        • Newth C.J.L.
        Dynamic respiratory system mechanics in infants during pressure and volume controlled ventilation.
        Eur Respir J. 2001; 17: 115-121
        • Kenaley K.M.
        • Blackson T.
        • Boylan L.
        • et al.
        Impact of endotracheal tube biofilm and respiratory secretions on airway resistance and mechanics of breathing in a neonatal lung model.
        J Appl Physiol. 2018; 125: 1227-1231
        • Vaity C.
        • Al-Subaie N.
        • Cecconi M.
        Cooling techniques for targeted temperature management post-cardiac arrest.
        Crit Care. 2015; 19: 103https://doi.org/10.1186/s13054-015-0804-1
        • du Plessis A.J.
        • Jonas R.A.
        • Wypij D.
        • et al.
        Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants.
        J Thorac Cardiovasc Surg. 1997; 114: 991-1001
        • Afzal B.
        • Chandrasekharan P.
        • Tancredi D.J.
        • Russell J.
        • Steinhorn R.H.
        • Lakshminrusimha S.
        Monitoring gas exchange during hypothermia for hypoxic-ischemic encephalopathy.
        Pediatr Crit Care Med. 2019; 20: 166-171
        • Patel R.L.
        • Turtle M.R.
        • Chambers D.J.
        • James D.N.
        • Newman S.
        • Venn G.E.
        Alpha-stat acid-base regulation during cardiopulmonary bypass improves neuropsychologic outcome in patients undergoing coronary artery bypass grafting.
        J Thorac Cardiovasc Surg. 1996; 111: 1267-1279