Advertisement
Research Article| Volume 161, P98-114, April 2021

Download started.

Ok

European Resuscitation Council Guidelines 2021: Basic Life Support

      Abstract

      The European Resuscitation Council has produced these basic life support guidelines, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include cardiac arrest recognition, alerting emergency services, chest compressions, rescue breaths, automated external defibrillation (AED), CPR quality measurement, new technologies, safety, and foreign body airway obstruction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Resuscitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Olasveengen T.
        Adult basic life support. 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations.
        Resuscitation. 2020; 156: A23-A34
        • Nolan J.P.
        • Monsieurs K.G.
        • Bossaert L.
        • et al.
        European Resuscitation Council COVID-19 guidelines executive summary.
        Resuscitation. 2020; 153: 45-55
        • Perkins G.D.
        • Morley P.T.
        • Nolan J.P.
        • et al.
        International Liaison Committee on Resuscitation: COVID-19 consensus on science, treatment recommendations and task force insights.
        Resuscitation. 2020; 151: 145-147
        • Couper K.
        • Taylor-Phillips S.
        • Grove A.
        • et al.
        COVID-19 in cardiac arrest and infection risk to rescuers: a systematic review.
        Resuscitation. 2020; 151: 59-66
        • Perkins G.D.
        • Graesner J.T.
        • Semeraro F.
        • et al.
        European Resuscitation Council Guidelines 2021 – Executive summary.
        Resuscitation. 2021; : 161
        • Koster R.W.
        • Sayre M.R.
        • Botha M.
        • et al.
        Part 5: Adult basic life support: 2010 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations.
        Resuscitation. 2010; 81: e48-e70
        • Bahr J.
        • Klingler H.
        • Panzer W.
        • Rode H.
        • Kettler D.
        Skills of lay people in checking the carotid pulse.
        Resuscitation. 1997; 35: 23-26
        • Ruppert M.
        • Reith M.W.
        • Widmann J.H.
        • et al.
        Checking for breathing: evaluation of the diagnostic capability of emergency medical services personnel, physicians, medical students, and medical laypersons.
        Ann Emerg Med. 1999; 34: 720-729
        • Perkins G.D.
        • Stephenson B.
        • Hulme J.
        • Monsieurs K.G.
        Birmingham assessment of breathing study (BABS).
        Resuscitation. 2005; 64: 109-113
        • Handley A.J.
        • Koster R.
        • Monsieurs K.
        • Perkins G.D.
        • Davies S.
        • Bossaert L.
        European Resuscitation Council guidelines for resuscitation 2005. Section 2. Adult basic life support and use of automated external defibrillators.
        Resuscitation. 2005; 67: S7-S23
        • Anonymous
        Part 3: adult basic life support. European Resuscitation Council.
        Resuscitation. 2000; 46: 29-71
        • Clark J.J.
        • Larsen M.P.
        • Culley L.L.
        • Graves J.R.
        • Eisenberg M.S.
        Incidence of agonal respirations in sudden cardiac arrest.
        Ann Emerg Med. 1992; 21: 1464-1467
        • Debaty G.
        • Labarere J.
        • Frascone R.J.
        • et al.
        Long-term prognostic value of gasping during out-of-hospital cardiac arrest.
        J Am Coll Cardiol. 2017; 70: 1467-1476
        • Bang A.
        • Herlitz J.
        • Martinell S.
        Interaction between emergency medical dispatcher and caller in suspected out-of-hospital cardiac arrest calls with focus on agonal breathing. A review of 100 tape recordings of true cardiac arrest cases.
        Resuscitation. 2003; 56: 25-34
        • Riou M.
        • Ball S.
        • Williams T.A.
        • et al.
        ‘She's sort of breathing’: What linguistic factors determine call-taker recognition of agonal breathing in emergency calls for cardiac arrest?.
        Resuscitation. 2018; 122: 92-98
        • Dami F.
        • Heymann E.
        • Pasquier M.
        • Fuchs V.
        • Carron P.N.
        • Hugli O.
        Time to identify cardiac arrest and provide dispatch-assisted cardio-pulmonary resuscitation in a criteria-based dispatch system.
        Resuscitation. 2015; 97: 27-33
        • Bohm K.
        • Rosenqvist M.
        • Hollenberg J.
        • Biber B.
        • Engerstrom L.
        • Svensson L.
        Dispatcher-assisted telephone-guided cardiopulmonary resuscitation: an underused lifesaving system.
        Eur J Emerg Med. 2007; 14: 256-259
        • Fukushima H.
        • Imanishi M.
        • Iwami T.
        • et al.
        Abnormal breathing of sudden cardiac arrest victims described by laypersons and its association with emergency medical service dispatcher-assisted cardiopulmonary resuscitation instruction.
        Emerg Med. 2015; 32: 314-317
        • Berdowski J.
        • Beekhuis F.
        • Zwinderman A.H.
        • Tijssen J.G.
        • Koster R.W.
        Importance of the first link: description and recognition of an out-of-hospital cardiac arrest in an emergency call.
        Circulation. 2009; 119: 2096-2102
        • Travers S.
        • Jost D.
        • Gillard Y.
        • et al.
        Out-of-hospital cardiac arrest phone detection: those who most need chest compressions are the most difficult to recognize.
        Resuscitation. 2014; 85: 1720-1725
        • Vaillancourt C.
        • Verma A.
        • Trickett J.
        • et al.
        Evaluating the effectiveness of dispatch-assisted cardiopulmonary resuscitation instructions.
        Acad Emerg Med. 2007; 14: 877-883
        • Brinkrolf P.
        • Metelmann B.
        • Scharte C.
        • Zarbock A.
        • Hahnenkamp K.
        • Bohn A.
        Bystander-witnessed cardiac arrest is associated with reported agonal breathing and leads to less frequent bystander CPR.
        Resuscitation. 2018; 127: 114-118
        • Hardeland C.
        • Sunde K.
        • Ramsdal H.
        • et al.
        Factors impacting upon timely and adequate allocation of prehospital medical assistance and resources to cardiac arrest patients.
        Resuscitation. 2016; 109: 56-63
        • Viereck S.
        • Moller T.P.
        • Ersboll A.K.
        • et al.
        Recognising out-of-hospital cardiac arrest during emergency calls increases bystander cardiopulmonary resuscitation and survival.
        Resuscitation. 2017; 115: 141-147
        • Feldman M.J.
        • Verbeek P.R.
        • Lyons D.G.
        • Chad S.J.
        • Craig A.M.
        • Schwartz B.
        Comparison of the medical priority dispatch system to an out-of-hospital patient acuity score.
        Acad Emerg Med. 2006; 13: 954-960
        • Sporer K.A.
        • Johnson N.J.
        Detailed analysis of prehospital interventions in medical priority dispatch system determinants.
        West J Emerg Med. 2011; 12: 19-29
        • Clawson J.
        • Olola C.
        • Scott G.
        • Heward A.
        • Patterson B.
        Effect of a Medical Priority Dispatch System key question addition in the seizure/convulsion/fitting protocol to improve recognition of ineffective (agonal) breathing.
        Resuscitation. 2008; 79: 257-264
        • Dami F.
        • Rossetti A.O.
        • Fuchs V.
        • Yersin B.
        • Hugli O.
        Proportion of out-of-hospital adult non-traumatic cardiac or respiratory arrest among calls for seizure.
        Emerg Med. 2012; 29: 758-760
        • Schwarzkoph M.
        • Yin L.
        • Hergert L.
        • Drucker C.
        • Counts C.R.
        • Eisenberg M.
        Seizure-like presentation in OHCA creates barriers to dispatch recognition of cardiac arrest.
        Resuscitation. 2020; 156: 230-236
        • Kamikura T.
        • Iwasaki H.
        • Myojo Y.
        • Sakagami S.
        • Takei Y.
        • Inaba H.
        Advantage of CPR-first over call-first actions for out-of-hospital cardiac arrests in nonelderly patients and of noncardiac aetiology.
        Resuscitation. 2015; 96: 37-45
        • Orlowski J.P.
        Optimum position for external cardiac compression in infants and young children.
        Ann Emerg Med. 1986; 15: 667-673
        • Cha K.C.
        • Kim H.J.
        • Shin H.J.
        • Kim H.
        • Lee K.H.
        • Hwang S.O.
        Hemodynamic effect of external chest compressions at the lower end of the sternum in cardiac arrest patients.
        J Emerg Med. 2013; 44: 691-697
        • Qvigstad E.
        • Kramer-Johansen J.
        • Tomte O.
        • et al.
        Clinical pilot study of different hand positions during manual chest compressions monitored with capnography.
        Resuscitation. 2013; 84: 1203-1207
        • Park M.
        • Oh W.S.
        • Chon S.B.
        • Cho S.
        Optimum chest compression point for cardiopulmonary resuscitation in children revisited using a 3D coordinate system imposed on CT: a retrospective, cross-sectional study.
        Pediatr Crit Care Med. 2018; 19: e576-e584
        • Lee J.
        • Oh J.
        • Lim T.H.
        • et al.
        Comparison of optimal point on the sternum for chest compression between obese and normal weight individuals with respect to body mass index, using computer tomography: a retrospective study.
        Resuscitation. 2018; 128: 1-5
        • Nestaas S.
        • Stensaeth K.H.
        • Rosseland V.
        • Kramer-Johansen J.
        Radiological assessment of chest compression point and achievable compression depth in cardiac patients.
        Scand J Trauma Resusc Emerg Med. 2016; 24: 54
        • Cha K.C.
        • Kim Y.J.
        • Shin H.J.
        • et al.
        Optimal position for external chest compression during cardiopulmonary resuscitation: an analysis based on chest CT in patients resuscitated from cardiac arrest.
        Emerg Med. 2013; 30: 615-619
        • Papadimitriou P.
        • Chalkias A.
        • Mastrokostopoulos A.
        • Kapniari I.
        • Xanthos T.
        Anatomical structures underneath the sternum in healthy adults and implications for chest compressions.
        Am J Emerg Med. 2013; 31: 549-555
        • Holmes S.
        • Kirkpatrick I.D.
        • Zelop C.M.
        • Jassal D.S.
        MRI evaluation of maternal cardiac displacement in pregnancy: implications for cardiopulmonary resuscitation.
        Am J Obstet Gynecol. 2015; 213 (401e1–e5)
        • Catena E.
        • Ottolina D.
        • Fossali T.
        • et al.
        Association between left ventricular outflow tract opening and successful resuscitation after cardiac arrest.
        Resuscitation. 2019; 138: 8-14
        • Park J.B.
        • Song I.K.
        • Lee J.H.
        • Kim E.H.
        • Kim H.S.
        • Kim J.T.
        Optimal chest compression position for patients with a single ventricle during cardiopulmonary resuscitation.
        Pediatr Crit Care Med. 2016; 17: 303-306
        • Considine J.
        • Gazmuri R.J.
        • Perkins G.D.
        • et al.
        Chest compression components (rate, depth, chest wall recoil and leaning): a scoping review.
        Resuscitation. 2020; 146: 188-202
        • Perkins G.D.
        • Handley A.J.
        • Koster R.W.
        • et al.
        European Resuscitation Council guidelines for resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation.
        Resuscitation. 2015; 95: 81-99
        • Cheskes S.
        • Common M.R.
        • Byers A.P.
        • Zhan C.
        • Silver A.
        • Morrison L.J.
        The association between chest compression release velocity and outcomes from out-of-hospital cardiac arrest.
        Resuscitation. 2015; 86: 38-43
        • Hwang S.O.
        • Cha K.C.
        • Kim K.
        • et al.
        A randomized controlled trial of compression rates during cardiopulmonary resuscitation.
        J Korean Med Sci. 2016; 31: 1491-1498
        • Kilgannon J.H.
        • Kirchhoff M.
        • Pierce L.
        • Aunchman N.
        • Trzeciak S.
        • Roberts B.W.
        Association between chest compression rates and clinical outcomes following in-hospital cardiac arrest at an academic tertiary hospital.
        Resuscitation. 2017; 110: 154-161
        • Kovacs A.
        • Vadeboncoeur T.F.
        • Stolz U.
        • et al.
        Chest compression release velocity: association with survival and favorable neurologic outcome after out-of-hospital cardiac arrest.
        Resuscitation. 2015; 92: 107-114
        • Riyapan S.
        • Naulnark T.
        • Ruangsomboon O.
        • et al.
        Improving quality of chest compression in Thai emergency department by using real-time audio-visual feedback cardio-pulmonary resuscitation monitoring.
        J Med Assoc Thail. 2019; 102: 245-251
        • Sainio M.
        • Hoppu S.
        • Huhtala H.
        • Eilevstjonn J.
        • Olkkola K.T.
        • Tenhunen J.
        Simultaneous beat-to-beat assessment of arterial blood pressure and quality of cardiopulmonary resuscitation in out-of-hospital and in-hospital settings.
        Resuscitation. 2015; 96: 163-169
        • Sutton R.M.
        • Case E.
        • Brown S.P.
        • et al.
        A quantitative analysis of out-of-hospital pediatric and adolescent resuscitation quality—a report from the ROC epistry-cardiac arrest.
        Resuscitation. 2015; 93: 150-157
        • Sutton R.M.
        • Reeder R.W.
        • Landis W.
        • et al.
        Chest compression rates and pediatric in-hospital cardiac arrest survival outcomes.
        Resuscitation. 2018; 130: 159-166
        • Edelson D.P.
        • Abella B.S.
        • Kramer-Johansen J.
        • et al.
        Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest.
        Resuscitation. 2006; 71: 137-145
        • Kramer-Johansen J.
        • Myklebust H.
        • Wik L.
        • et al.
        Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study.
        Resuscitation. 2006; 71: 283-292
        • Kern K.B.
        • Sanders A.B.
        • Raife J.
        • Milander M.M.
        • Otto C.W.
        • Ewy G.A.
        A study of chest compression rates during cardiopulmonary resuscitation in humans: the importance of rate-directed chest compressions.
        Arch Intern Med. 1992; 152: 145-149
        • Idris A.H.
        • Guffey D.
        • Pepe P.E.
        • et al.
        Chest compression rates and survival following out-of-hospital cardiac arrest.
        Crit Care Med. 2015; 43: 840-848
        • Idris A.H.
        • Guffey D.
        • Aufderheide T.P.
        • et al.
        Relationship between chest compression rates and outcomes from cardiac arrest.
        Circulation. 2012; 125: 3004-3012
        • Abella B.S.
        • Sandbo N.
        • Vassilatos P.
        • et al.
        Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest.
        Circulation. 2005; 111: 428-434
        • Ornato J.P.
        • Gonzalez E.R.
        • Garnett A.R.
        • Levine R.L.
        • McClung B.K.
        Effect of cardiopulmonary resuscitation compression rate on end-tidal carbon dioxide concentration and arterial pressure in man.
        Crit Care Med. 1988; 16: 241-245
        • Bohn A.
        • Weber T.P.
        • Wecker S.
        • et al.
        The addition of voice prompts to audiovisual feedback and debriefing does not modify CPR quality or outcomes in out of hospital cardiac arrest—a prospective, randomized trial.
        Resuscitation. 2011; 82: 257-262
        • Stiell I.G.
        • Brown S.P.
        • Nichol G.
        • et al.
        What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients?.
        Circulation. 2014; 130: 1962-1970
        • Vadeboncoeur T.
        • Stolz U.
        • Panchal A.
        • et al.
        Chest compression depth and survival in out-of-hospital cardiac arrest.
        Resuscitation. 2014; 85: 182-188
        • Hellevuo H.
        • Sainio M.
        • Nevalainen R.
        • et al.
        Deeper chest compression – more complications for cardiac arrest patients?.
        Resuscitation. 2013; 84: 760-765
        • Stiell I.G.
        • Brown S.P.
        • Christenson J.
        • et al.
        What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation?.
        Crit Care Med. 2012; 40: 1192-1198
        • Babbs C.F.
        • Kemeny A.E.
        • Quan W.
        • Freeman G.
        A new paradigm for human resuscitation research using intelligent devices.
        Resuscitation. 2008; 77: 306-315
        • Sutton R.M.
        • French B.
        • Niles D.E.
        • et al.
        2010 American Heart Association recommended compression depths during pediatric in-hospital resuscitations are associated with survival.
        Resuscitation. 2014; 85: 1179-1184
        • Holt J.
        • Ward A.
        • Mohamed T.Y.
        • et al.
        The optimal surface for delivery of CPR: a systematic review and meta-analysis.
        Resuscitation. 2020; 155: 159-164
        • Perkins G.D.
        • Kocierz L.
        • Smith S.C.
        • McCulloch R.A.
        • Davies R.P.
        Compression feedback devices over estimate chest compression depth when performed on a bed.
        Resuscitation. 2009; 80: 79-82
        • Beesems S.G.
        • Koster R.W.
        Accurate feedback of chest compression depth on a manikin on a soft surface with correction for total body displacement.
        Resuscitation. 2014; 85: 1439-1443
        • Nishisaki A.
        • Maltese M.R.
        • Niles D.E.
        • et al.
        Backboards are important when chest compressions are provided on a soft mattress.
        Resuscitation. 2012; 83: 1013-1020
        • Sato H.
        • Komasawa N.
        • Ueki R.
        • et al.
        Backboard insertion in the operating table increases chest compression depth: a manikin study.
        J Anesth. 2011; 25: 770-772
        • Song Y.
        • Oh J.
        • Lim T.
        • Chee Y.
        A new method to increase the quality of cardiopulmonary resuscitation in hospital.
        Conf Proc IEEE Eng Med Biol Soc 2013. 2013; : 469-472
        • Lee S.
        • Oh J.
        • Kang H.
        • et al.
        Proper target depth of an accelerometer-based feedback device during CPR performed on a hospital bed: a randomized simulation study.
        Am J Emerg Med. 2015; 33: 1425-1429
        • Oh J.
        • Song Y.
        • Kang B.
        • et al.
        The use of dual accelerometers improves measurement of chest compression depth.
        Resuscitation. 2012; 83: 500-504
        • Ruiz de Gauna S.
        • Gonzalez-Otero D.M.
        • Ruiz J.
        • Gutierrez J.J.
        • Russell J.K.
        A feasibility study for measuring accurate chest compression depth and rate on soft surfaces using two accelerometers and spectral analysis.
        Biomed Res Int. 2016; 2016: 6596040
        • Oh J.
        • Chee Y.
        • Song Y.
        • Lim T.
        • Kang H.
        • Cho Y.
        A novel method to decrease mattress compression during CPR using a mattress compression cover and a vacuum pump.
        Resuscitation. 2013; 84: 987-991
        • Perkins G.D.
        • Benny R.
        • Giles S.
        • Gao F.
        • Tweed M.J.
        Do different mattresses affect the quality of cardiopulmonary resuscitation?.
        Intensive Care Med. 2003; 29: 2330-2335
        • Tweed M.
        • Tweed C.
        • Perkins G.D.
        The effect of differing support surfaces on the efficacy of chest compressions using a resuscitation manikin model.
        Resuscitation. 2001; 51: 179-183
        • Jantti H.
        • Silfvast T.
        • Turpeinen A.
        • Kiviniemi V.
        • Uusaro A.
        Quality of cardiopulmonary resuscitation on manikins: on the floor and in the bed.
        Acta Anaesthesiol Scand. 2009; 53: 1131-1137
        • Ahn H.J.
        • Cho Y.
        • You Y.H.
        • et al.
        Effect of using a home-bed mattress on bystander chest compression during out-of-hospital cardiac arrest.
        Hong Kong J Emerg Med. 2019;
        • Andersen L.O.
        • Isbye D.L.
        • Rasmussen L.S.
        Increasing compression depth during manikin CPR using a simple backboard.
        Acta Anaesthesiol Scand. 2007; 51: 747-750
        • Fischer E.J.
        • Mayrand K.
        • Ten Eyck R.P.
        Effect of a backboard on compression depth during cardiac arrest in the ED: a simulation study.
        Am J Emerg Med. 2016; 34: 274-277
        • Perkins G.D.
        • Smith C.M.
        • Augre C.
        • et al.
        Effects of a backboard, bed height, and operator position on compression depth during simulated resuscitation.
        Intensive Care Med. 2006; 32: 1632-1635
        • Sanri E.
        • Karacabey S.
        The impact of backboard placement on chest compression quality: a mannequin study.
        Prehosp Disaster Med. 2019; 34: 182-187
        • Putzer G.
        • Fiala A.
        • Braun P.
        • et al.
        Manual versus mechanical chest compressions on surfaces of varying softness with or without backboards: a randomized, crossover manikin study.
        J Emerg Med. 2016; 50 (594–600e1)
        • Olasveengen T.M.
        • de Caen A.R.
        • Mancini M.E.
        • et al.
        2017 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations summary.
        Resuscitation. 2017; 121: 201-214
        • Ashoor H.M.
        • Lillie E.
        • Zarin W.
        • et al.
        Effectiveness of different compression-to-ventilation methods for cardiopulmonary resuscitation: a systematic review.
        Resuscitation. 2017; 118: 112-125
        • Garza A.G.
        • Gratton M.C.
        • Salomone J.A.
        • Lindholm D.
        • McElroy J.
        • Archer R.
        Improved patient survival using a modified resuscitation protocol for out-of-hospital cardiac arrest.
        Circulation. 2009; 119: 2597-2605
        • Olasveengen T.M.
        • de Caen A.R.
        • Mancini M.E.
        • et al.
        2017 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations summary.
        Circulation. 2017; 136: e424-e440
        • Ma M.H.
        • Lu T.C.
        • Ng J.C.
        • et al.
        Evaluation of emergency medical dispatch in out-of-hospital cardiac arrest in Taipei.
        Resuscitation. 2007; 73: 236-245
        • Bohm K.
        • Stalhandske B.
        • Rosenqvist M.
        • Ulfvarson J.
        • Hollenberg J.
        • Svensson L.
        Tuition of emergency medical dispatchers in the recognition of agonal respiration increases the use of telephone assisted CPR.
        Resuscitation. 2009; 80: 1025-1028
        • Roppolo L.P.
        • Westfall A.
        • Pepe P.E.
        • et al.
        Dispatcher assessments for agonal breathing improve detection of cardiac arrest.
        Resuscitation. 2009; 80: 769-772
        • Dami F.
        • Fuchs V.
        • Praz L.
        • Vader J.P.
        Introducing systematic dispatcher-assisted cardiopulmonary resuscitation (telephone-CPR) in a non-Advanced Medical Priority Dispatch System (AMPDS): implementation process and costs.
        Resuscitation. 2010; 81: 848-852
        • Lewis M.
        • Stubbs B.A.
        • Eisenberg M.S.
        Dispatcher-assisted cardiopulmonary resuscitation: time to identify cardiac arrest and deliver chest compression instructions.
        Circulation. 2013; 128: 1522-1530
        • Nichol G.
        • Leroux B.
        • Wang H.
        • et al.
        Trial of continuous or interrupted chest compressions during CPR.
        N Engl J Med. 2015; 373: 2203-2214
        • Gold L.S.
        • Fahrenbruch C.E.
        • Rea T.D.
        • Eisenberg M.S.
        The relationship between time to arrival of emergency medical services (EMS) and survival from out-of-hospital ventricular fibrillation cardiac arrest.
        Resuscitation. 2010; 81: 622-625
        • Wik L.
        • Hansen T.B.
        • Fylling F.
        • et al.
        Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial.
        JAMA. 2003; 289: 1389-1395
        • Baker P.W.
        • Conway J.
        • Cotton C.
        • et al.
        Defibrillation or cardiopulmonary resuscitation first for patients with out-of-hospital cardiac arrests found by paramedics to be in ventricular fibrillation? A randomised control trial.
        Resuscitation. 2008; 79: 424-431
        • Jacobs I.G.
        • Finn J.C.
        • Oxer H.F.
        • Jelinek G.A.
        CPR before defibrillation in out-of-hospital cardiac arrest: a randomized trial.
        EMA – Emerg Med Aust. 2005; 17: 39-45
        • Ma M.H.
        • Chiang W.C.
        • Ko P.C.
        • et al.
        A randomized trial of compression first or analyze first strategies in patients with out-of-hospital cardiac arrest: results from an Asian community.
        Resuscitation. 2012; 83: 806-812
        • Stiell I.G.
        • Nichol G.
        • Leroux B.G.
        • et al.
        Early versus later rhythm analysis in patients with out-of-hospital cardiac arrest.
        N Engl J Med. 2011; 365: 787-797
        • Sunde K.
        • Jacobs I.
        • Deakin C.D.
        • et al.
        Part 6: Defibrillation: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations.
        Resuscitation. 2010; 81: e71-e85
        • Jacobs I.
        • Sunde K.
        • Deakin C.D.
        • et al.
        Part 6: Defibrillation: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations.
        Circulation. 2010; 122: S325-S337
        • Semeraro F.
        European Resuscitation Council guidelines systems saving lives 2020 resuscitation.
        2020
        • Hostler D.
        • Everson-Stewart S.
        • Rea T.D.
        • et al.
        Effect of real-time feedback during cardiopulmonary resuscitation outside hospital: prospective, cluster-randomised trial.
        BMJ. 2011; 342: d512
        • Couper K.
        • Kimani P.K.
        • Abella B.S.
        • et al.
        The system-wide effect of real-time audiovisual feedback and postevent debriefing for in-hospital cardiac arrest: the cardiopulmonary resuscitation quality improvement initiative.
        Crit Care Med. 2015; 43: 2321-2331
        • Sainio M.
        • Kamarainen A.
        • Huhtala H.
        • et al.
        Real-time audiovisual feedback system in a physician-staffed helicopter emergency medical service in Finland: the quality results and barriers to implementation.
        Scand J Trauma Resusc Emerg Med. 2013; 21: 50
        • Bobrow B.J.
        • Vadeboncoeur T.F.
        • Stolz U.
        • et al.
        The influence of scenario-based training and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation quality and survival from out-of-hospital cardiac arrest.
        Ann Emerg Med. 2013; 62 (47–56e1)
        • Abella B.S.
        • Edelson D.P.
        • Kim S.
        • et al.
        CPR quality improvement during in-hospital cardiac arrest using a real-time audiovisual feedback system.
        Resuscitation. 2007; 73: 54-61
        • Agerskov M.
        • Hansen M.B.
        • Nielsen A.M.
        • Moller T.P.
        • Wissenberg M.
        • Rasmussen L.S.
        Return of spontaneous circulation and long-term survival according to feedback provided by automated external defibrillators.
        Acta Anaesthesiol Scand. 2017; 61: 1345-1353
        • Goharani R.
        • Vahedian-Azimi A.
        • Farzanegan B.
        • et al.
        Real-time compression feedback for patients with in-hospital cardiac arrest: a multi-center randomized controlled clinical trial.
        J Intensive Care. 2019; 7: 5
        • Vahedian-Azimi A.
        • Hajiesmaeili M.
        • Amirsavadkouhi A.
        • et al.
        Effect of the Cardio First Angel device on CPR indices: a randomized controlled clinical trial.
        Crit Care. 2016; 20: 147
        • Chiang W.C.
        • Chen W.J.
        • Chen S.Y.
        • et al.
        Better adherence to the guidelines during cardiopulmonary resuscitation through the provision of audio-prompts.
        Resuscitation. 2005; 64: 297-301
        • Olasveengen T.M.
        • Mancini M.E.
        • Perkins G.D.
        • et al.
        Adult basic life support: international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations.
        Resuscitation. 2020; 156: A35-A79
        • White L.
        • Rogers J.
        • Bloomingdale M.
        • et al.
        Dispatcher-assisted cardiopulmonary resuscitation: risks for patients not in cardiac arrest.
        Circulation. 2010; 121: 91-97
        • Haley K.B.
        • Lerner E.B.
        • Pirrallo R.G.
        • Croft H.
        • Johnson A.
        • Uihlein M.
        The frequency and consequences of cardiopulmonary resuscitation performed by bystanders on patients who are not in cardiac arrest.
        Prehosp Emerg Care. 2011; 15: 282-287
        • Moriwaki Y.
        • Sugiyama M.
        • Tahara Y.
        • et al.
        Complications of bystander cardiopulmonary resuscitation for unconscious patients without cardiopulmonary arrest.
        J Emerg Trauma Shock. 2012; 5: 3-6
        • Tanaka Y.
        • Nishi T.
        • Takase K.
        • et al.
        Survey of a protocol to increase appropriate implementation of dispatcher-assisted cardiopulmonary resuscitation for out-of-hospital cardiac arrest.
        Circulation. 2014; 129: 1751-1760
        • Lu T.C.
        • Chang Y.T.
        • Ho T.W.
        • et al.
        Using a smartwatch with real-time feedback improves the delivery of high-quality cardiopulmonary resuscitation by healthcare professionals.
        Resuscitation. 2019; 140: 16-22
        • Park S.S.
        Comparison of chest compression quality between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method during CPR.
        Technol Health Care. 2014; 22: 351-358
        • Ringh M.
        • Rosenqvist M.
        • Hollenberg J.
        • et al.
        Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest.
        N Engl J Med. 2015; 372: 2316-2325
        • Lee S.Y.
        • Shin S.D.
        • Lee Y.J.
        • et al.
        Text message alert system and resuscitation outcomes after out-of-hospital cardiac arrest: a before-and-after population-based study.
        Resuscitation. 2019; 138: 198-207
        • Scquizzato T.
        • Pallanch O.
        • Belletti A.
        • et al.
        Enhancing citizens response to out-of-hospital cardiac arrest: a systematic review of mobile-phone systems to alert citizens as first responders.
        Resuscitation. 2020; 152: 16-25
        • Andelius L.
        • Malta Hansen C.
        • Lippert F.K.
        • et al.
        Smartphone activation of citizen responders to facilitate defibrillation in out-of-hospital cardiac arrest.
        J Am Coll Cardiol. 2020; 76: 43-53
        • Lin Y.Y.
        • Chiang W.C.
        • Hsieh M.J.
        • Sun J.T.
        • Chang Y.C.
        • Ma M.H.
        Quality of audio-assisted versus video-assisted dispatcher-instructed bystander cardiopulmonary resuscitation: a systematic review and meta-analysis.
        Resuscitation. 2018; 123: 77-85
        • Lee S.Y.
        • Song K.J.
        • Shin S.D.
        • Hong K.J.
        • Kim T.H.
        Comparison of the effects of audio-instructed and video-instructed dispatcher-assisted cardiopulmonary resuscitation on resuscitation outcomes after out-of-hospital cardiac arrest.
        Resuscitation. 2020; 147: 12-20
        • Kim C.
        • Choi H.J.
        • Moon H.
        • et al.
        Prehospital advanced cardiac life support by EMT with a smartphone-based direct medical control for nursing home cardiac arrest.
        Am J Emerg Med. 2019; 37: 585-589
        • Gulshan V.
        • Peng L.
        • Coram M.
        • et al.
        Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.
        JAMA. 2016; 316: 2402-2410
        • Rajkomar A.
        • Oren E.
        • Chen K.
        • et al.
        Scalable and accurate deep learning with electronic health records.
        NPJ Digit Med. 2018; 1: 18
        • Blomberg S.N.
        • Folke F.
        • Ersboll A.K.
        • et al.
        Machine learning as a supportive tool to recognize cardiac arrest in emergency calls.
        Resuscitation. 2019; 138: 322-329
        • Chan J.
        • Rea T.
        • Gollakota S.
        • Sunshine J.E.
        Contactless cardiac arrest detection using smart devices.
        NPJ Digit Med. 2019; 2: 52
        • Kwon J.M.
        • Jeon K.H.
        • Kim H.M.
        • et al.
        Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes.
        Resuscitation. 2019; 139: 84-91
        • Al-Dury N.
        • Ravn-Fischer A.
        • Hollenberg J.
        • et al.
        Identifying the relative importance of predictors of survival in out of hospital cardiac arrest: a machine learning study.
        Scand J Trauma Resusc Emerg Med. 2020; 28: 60
        • Claesson A.
        • Backman A.
        • Ringh M.
        • et al.
        Time to delivery of an automated external defibrillator using a drone for simulated out-of-hospital cardiac arrests vs emergency medical services.
        JAMA. 2017; 317: 2332-2334
        • Boutilier J.J.
        • Brooks S.C.
        • Janmohamed A.
        • et al.
        Optimizing a drone network to deliver automated external defibrillators.
        Circulation. 2017; 135: 2454-2465
        • Vogele A.
        • Strohle M.
        • Paal P.
        • Rauch S.
        • Brugger H.
        Can drones improve survival rates in mountain areas, providing automated external defibrillators?.
        Resuscitation. 2020; 146: 277-278
        • Sanfridsson J.
        • Sparrevik J.
        • Hollenberg J.
        • et al.
        Drone delivery of an automated external defibrillator – a mixed method simulation study of bystander experience.
        Scand J Trauma Resusc Emerg Med. 2019; 27: 40
        • Fingerhut L.A.
        • Cox C.S.
        • Warner M.
        International comparative analysis of injury mortality. Findings from the ICE on injury statistics. International Collaborative Effort on Injury Statistics.
        Adv Data. 1998; : 1-20
      1. Office for National Statistics. Choking related deaths in England and Wales, 2014 to 2018. Office for National Statistics (https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/adhocs/10785chokingrelateddeathsinenglandandwales2014to2018).

      2. Office for National Statistics. Choking related deaths in England and Wales, 2014 to 2018. Office for National Statistics (https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/adhocs/10785chokingrelateddeathsinenglandandwales2014to2018).

        • Foltran F.
        • Ballali S.
        • Passali F.M.
        • et al.
        Foreign bodies in the airways: a meta-analysis of published papers.
        Int J Pediatr Otorhinolaryngol. 2012; 76: S12-S19
        • Hemsley B.
        • Steel J.
        • Sheppard J.J.
        • Malandraki G.A.
        • Bryant L.
        • Balandin S.
        Dying for a meal: an integrative review of characteristics of choking incidents and recommendations to prevent fatal and nonfatal choking across populations.
        Am J Speech Lang Pathol. 2019; 28: 1283-1297
        • Wong S.C.
        • Tariq S.M.
        Cardiac arrest following foreign-body aspiration.
        Respir Care. 2011; 56: 527-529
        • Igarashi Y.
        • Norii T.
        • Sung-Ho K.
        • et al.
        New classifications for Life-threatening foreign body airway obstruction.
        Am J Emerg Med. 2019; 37: 2177-2181
        • Couper K.
        • Abu Hassan A.
        • Ohri V.
        • et al.
        Removal of foreign body airway obstruction: a systematic review of interventions.
        Resuscitation. 2020; 156: 174-181
        • Igarashi Y.
        • Yokobori S.
        • Yoshino Y.
        • Masuno T.
        • Miyauchi M.
        • Yokota H.
        Prehospital removal improves neurological outcomes in elderly patient with foreign body airway obstruction.
        Am J Emerg Med. 2017; 35: 1396-1399
        • Kinoshita K.
        • Azuhata T.
        • Kawano D.
        • Kawahara Y.
        Relationships between pre-hospital characteristics and outcome in victims of foreign body airway obstruction during meals.
        Resuscitation. 2015; 88: 63-67
        • Redding J.S.
        The choking controversy: critique of evidence on the Heimlich maneuver.
        Crit Care Med. 1979; 7: 475-479
        • Vilke G.M.
        • Smith A.M.
        • Ray L.U.
        • Steen P.J.
        • Murrin P.A.
        • Chan T.C.
        Airway obstruction in children aged less than 5 years: the prehospital experience.
        Prehosp Emerg Care. 2004; 8: 196-199
        • Langhelle A.
        • Sunde K.
        • Wik L.
        • Steen P.A.
        Airway pressure with chest compressions versus Heimlich manoeuvre in recently dead adults with complete airway obstruction.
        Resuscitation. 2000; 44: 105-108
        • Guildner C.W.
        • Williams D.
        • Subitch T.
        Airway obstructed by foreign material: the Heimlich maneuver.
        JACEP. 1976; 5: 675-677
        • Ruben H.
        • Macnaughton F.I.
        The treatment of food-choking.
        Practitioner. 1978; 221: 725-729
        • Blain H.
        • Bonnafous M.
        • Grovalet N.
        • Jonquet O.
        • David M.
        The table maneuver: a procedure used with success in four cases of unconscious choking older subjects.
        Am J Med. 2010; 123 (1150e7–e9)
        • Pavitt M.J.
        • Swanton L.L.
        • Hind M.
        • et al.
        Choking on a foreign body: a physiological study of the effectiveness of abdominal thrust manoeuvres to increase thoracic pressure.
        Thorax. 2017; 72: 576-578