Advertisement
Review| Volume 148, P173-190, March 01, 2020

First aid cooling techniques for heat stroke and exertional hyperthermia: A systematic review and meta-analysis

      Abstract

      Background

      Heat stroke is an emergent condition characterized by hyperthermia (>40 °C/>104 °F) and nervous system dysregulation. There are two primary etiologies: exertional which occurs during physical activity and non-exertional which occurs during extreme heat events without physical exertion. Left untreated, both may lead to significant morbidity, are considered a special circumstance for cardiac arrest, and cause of mortality.

      Methods

      We searched Medline, Embase, CINAHL and SPORTDiscus. We used Grading of Recommendations Assessment, Development and Evaluation (GRADE) methods and risk of bias assessments to determine the certainty and quality of evidence. We included randomized controlled trials, non-randomized trials, cohort studies and case series of five or more patients that evaluated adults and children with non-exertional or exertional heat stroke or exertional hyperthermia, and any cooling technique applicable to first aid and prehospital settings. Outcomes included: cooling rate, mortality, neurological dysfunction, adverse effects and hospital length of stay.

      Results

      We included 63 studies, of which 37 were controlled studies, two were cohort studies and 24 were case series of heat stroke patients. Water immersion of adults with exertional hyperthermia [cold water (14–17 °C/57.2–62.6 °F), colder water (8–12 °C/48.2–53.6 °F) and ice water (1–5 °C/33.8–41 °F)] resulted in faster cooling rates when compared to passive cooling. No single water temperature range was found to be associated with a quicker core temperature reduction than another (cold, colder or ice).

      Conclusion

      Water immersion techniques (using 1–17 °C water) more effectively lowered core body temperatures when compared with passive cooling, in hyperthermic adults. The available evidence suggests water immersion can rapidly reduce core body temperature in settings where it is feasible.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Resuscitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bouchama A.
        • Knochel J.P.
        Heat stroke.
        N Engl J Med. 2002; 346: 1978-1988
        • Roberts W.O.
        Exertional heat stroke during a cool weather marathon: a case study.
        Med Sci Sports Exerc. 2006; 38: 1197-1203
        • Yaqub B.A.
        • Al-Harthi S.S.
        • Al-Orainey I.O.
        • Laajam M.A.
        • Obeid M.T.
        Heat stroke at the Mekkah pilgrimage: clinical characteristics and course of 30 patients.
        Q J Med. 1986; 59: 523-530
        • Sahni G.
        The recurring epidemic of heat stroke in children in Muzaffarpur, Bihar, India.
        Ann Trop Med Public Health. 2013; 6: 89
        • How C.-K.
        • Chern C.-H.
        • Wang L.-M.
        • Lee C.-H.
        Heat stroke in a subtropical country.
        Am J Emerg Med. 2000; 18: 474-477
      1. Extreme Heat | Natural Disasters and Severe Weather | CDC [Internet]. 2019 [cited 2019 Jun 17]. Available from: http://www.cdc.gov/disasters/extremeheat/index.html.

        • Argaud L.
        • Ferry T.
        • Le Q.-H.
        • et al.
        Short- and long-term outcomes of heatstroke following the 2003 heat wave in Lyon, France.
        Arch Intern Med. 2007; 167: 2177-2183
        • Centers for Disease Control and Prevention
        Heat-related mortality Chicago, July 1995.
        Morb Mortal Wkly Rep. 1995; 44: 577-579
        • Casa D.J.
        • Guskiewicz K.M.
        • Anderson S.A.
        • et al.
        National athletic trainers’ association position statement: preventing sudden death in sports.
        J Athl Train. 2012; 47: 96-118
        • Rav-Acha M.
        • Hadad E.
        • Heled Y.
        • Moran D.S.
        • Epstein Y.
        Fatal exertional heat stroke: a case series.
        Am J Med Sci. 2004; 328: 84-87
        • Truhlář A.
        • Deakin C.D.
        • Soar J.
        • et al.
        European resuscitation council guidelines for resuscitation 2015.
        Resuscitation. 2015; 95: 148-201
        • Buchanan W.J.
        Heat stroke in India: an examination of some statistics relating.
        The Lancet. 1900; 156: 803-805
        • Wu X.
        • Brady J.E.
        • Rosenberg H.
        • Li G.
        Emergency department visits for heat stroke in the United States, 2009 and 2010.
        Inj Epidemiol. 2014; 1: 8
        • Knowlton K.
        • Rotkin-Ellman M.
        • Geballe L.
        • Max W.
        • Solomon G.M.
        Six climate change-related events in the United States accounted for about $14 billion in lost lives and health costs.
        Health Aff Proj Hope. 2011; 30: 2167-2176
        • Barnes S.R.
        • Ambrose J.F.
        • Maule A.L.
        • et al.
        Incidence, timing, and seasonal patterns of heat illnesses during U.S. Army basic combat training, 2014–2018.
        MSMR. 2019; 26: 7-14
        • Fouillet A.
        • Rey G.
        • Laurent F.
        • et al.
        Excess mortality related to the August 2003 heat wave in France.
        Int Arch Occup Environ Health. 2006; 80: 16-24
      2. Netherlands S. More deaths during recent heat wave [Internet]. Statistics Netherlands. [cited 2019 Nov 10]. Available from: https://www.cbs.nl/en-gb/news/2019/32/more-deaths-during-recent-heat-wave.

      3. Agnès Buzyn : “À Rouen, les premiers éléments sur les toxiques les plus dangereux sont rassurants” [Internet]. [cited 2019 Nov 10]. Available from: https://www.franceinter.fr/emissions/l-invite-de-8h20-le-grand-entretien/l-invite-de-8h20-le-grand-entretien-02-octobre-2019.

        • Nakamura S.
        • Aruga T.
        Epidemiology of heat illness.
        Res Rev. 2013; 56: 5
        • Hayashida K.
        • Shimizu K.
        • Yokota H.
        Severe heatwave in Japan.
        Acute Med Surg. 2019; 6: 206-207
        • Al-Harthi S.S.
        Management of heat stroke patients by rapid cooling at mecca pilgrimage (Hajj 1404) comparing a conventional method with a body cooling unit.
        Saudi Med J. 1986; 7 (Available from:)
        • Danish Khan I.
        • Hussaini S.B.
        • Khan S.
        • et al.
        Emergency response of Indian Hajj medical Missionto heat illness among Indian pilgrims in tent-clinics at mina and Arafat during Hajj, 2016.
        Int J Travel Med Glob Health. 2017; 5: 135-139
        • Ahmadalipour A.
        • Moradkhani H.
        Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA).
        Environ Int. 2018; 117: 215-225
        • Vicario S.J.
        • Okabajue R.
        • Haltom T.
        Rapid cooling in classic heatstroke: effect on mortality rates.
        Am J Emerg Med. 1986; 4: 394-398
        • Zeller L.
        • Novack V.
        • Barski L.
        • Jotkowitz A.
        • Almog Y.
        Exertional heatstroke: clinical characteristics, diagnostic and therapeutic considerations.
        Eur J Intern Med. 2011; 22: 296-299
        • Belval L.N.
        • Casa D.J.
        • Adams W.M.
        • et al.
        Consensus statement- prehospital care of exertional heat stroke.
        Prehosp Emerg Care. 2018; 22: 392-397
        • Pease S.
        • Bouadma L.
        • Kermarrec N.
        • Schortgen F.
        • Régnier B.
        • Wolff M.
        Early organ dysfunction course, cooling time and outcome in classic heatstroke.
        Intensive Care Med. 2009; 35: 1454-1458
        • Casa D.J.
        • McDermott B.P.
        • Lee E.C.
        • Yeargin S.W.
        • Armstrong L.E.
        • Maresh C.M.
        Cold water immersion: the gold standard for exertional heatstroke treatment.
        Exerc Sport Sci Rev. 2007; 35: 141-149
        • Hosokawa Y.
        • Nagata T.
        • Hasegawa M.
        Inconsistency in the standard of care–toward evidence-based management of exertional heat stroke.
        Front Physiol. 2019; (Available from:): 10
        • Moher D.
        • Shamseer L.
        • Clarke M.
        • et al.
        Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement.
        Syst Rev. 2015; 4: 1
        • Higgins J.
        Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011].
        (Available from:) The Cochrane Collaborative, 2011
        www.handbook.cochrane.org
        • Wells G.A.
        • Shea B.
        • O’Connell D.
        • et al.
        The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet].
        (Available from:) Department of Epidemiology and Community Medicine, University of Ottawa, 2013
        • Shunemann H.
        • Brozek J.
        • Guyatt G.H.
        • Oxman A.D.
        GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations. Updated October 2013.
        (Available from:) The GRADE Working Group, 2013
        www.guidelinedevelopment.org/handbook
      4. Review Manager (RevMan5.3) [Computer program].
        The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen2014
        • Misset B.
        • De Jonghe B.
        • Bastuji-Garin S.
        • et al.
        Mortality of patients with heatstroke admitted to intensive care units during the 2003 heat wave in France: a national multiple-center risk-factor study.
        Crit Care Med. 2006; 34: 1087-1092
        • Sprung C.L.
        Hemodynamic alterations of heat stroke in the elderly.
        Chest. 1979; 75: 362-366
        • Al-Aska A.K.
        • Abu-Aisha H.
        • Yaqub B.
        • Al-Harthi S.S.
        • Sallam A.
        Simplified cooling bed for heat stoke.
        The Lancet. 1987; 329: 381
        • Danks D.M.
        • Webb D.W.
        • Allen J.
        Heat illness in infants and young children: a study of 47 cases 1962.
        Wilderness Environ Med. 2004; 15 (discussion 291-292): 293-300
        • Deshwal R.
        • Tiwari D.
        • Singh R.
        Clinical and biochemical characteristics of exertional heat stroke among paratroopers in Agra, India.
        J Assoc Phys India. 2017; 65: 57-61
        • Hart G.R.
        • Anderson R.J.
        • Crumpler C.P.
        • Shulkin A.
        • Reed G.
        • Knochel J.P.
        Epidemic classical heat stroke: clinical characteristics and course of 28 patients.
        Medicine (Baltimore). 1982; 61: 189-197
        • Szold O.
        • Reider-Groswasser I.I.
        • Abraham R.B.
        • et al.
        Gray–white matter discrimination—a possible marker for brain damage in heat stroke?.
        Eur J Radiol. 2002; 43: 1-5
        • Graham B.S.
        • Lichtenstein M.J.
        • Hinson J.M.
        • Theil G.B.
        Nonexertional heatstroke. Physiologic management and cooling in 14 patients.
        Arch Intern Med. 1986; 146: 87-90
        • Hawes R.
        • McMorran J.
        • Vallis C.
        Exertional heat illness in half marathon runners: experiences of the Great North Run.
        Emerg Med J. 2010; 27: 866-867
        • Singh S.K.
        • Singh S.
        • Shahbabu B.
        • Kumar A.
        • Singh V.
        Managing exertional heat stroke among the combatants.
        J Clin Diagn Res. 2017; 11: 1-4
        • Sithinamsuwan P.
        • Piyavechviratana K.
        • Kitthaweesin T.
        • et al.
        Exertional heatstroke: early recognition and outcome with aggressive combined cooling—a 12-year experience.
        Mil Med. 2009; 174: 496-502
        • McDermott B.P.
        • Casa D.J.
        • O’Connor F.G.
        • et al.
        Cold-water dousing with ice massage to treat exertional heat stroke: a case series.
        Aviat Space Environ Med. 2009; 80: 720-722
        • Marom T.
        • Itskoviz D.
        • Lavon H.
        • Ostfeld I.
        Acute care for exercise-induced hyperthermia to avoid adverse outcome from exertional heat stroke.
        J Sport Rehabil. 2011; 20: 219-227
        • Lemire B.B.
        • Gagnon D.
        • Jay O.
        • Kenny G.P.
        Differences between sexes in rectal cooling rates after exercise-induced hyperthermia.
        Med Sci Sports Exerc. 2009; 41: 1633-1639
        • Demartini J.K.
        • Casa D.J.
        • Stearns R.
        • et al.
        Effectiveness of cold water immersion in the treatment of exertional heat stroke at the falmouth road race.
        Med Sci Sports Exerc. 2015; 47: 240-245
        • Miller K.C.
        • Swartz E.E.
        • Long B.C.
        Cold-water immersion for hyperthermic humans wearing American football uniforms.
        J Athl Train. 2015; 50: 792-799
        • Shafie H.
        • Wahab M.A.
        • Masilamany M.
        • Hassan A.A.
        Exertional heat stroke: a lucky bunch of overly motivated policemen!.
        Hong Kong J Emerg Med. 2007; 14: 37-44
        • Yang M.
        • Li Z.
        • Zhao Y.
        • et al.
        Outcome and risk factors associated with extent of central nervous system injury due to exertional heat stroke.
        Medicine (Baltimore). 2017; 96: e8417
        • Divine J.G.
        • Daggy M.W.
        • Dixon E.E.
        • LeBlanc D.P.
        • Okragly R.A.
        • Hasselfeld K.A.
        Case series of exertional heat stroke in runners during early spring: 2014 to 2016 Cincinnati flying pig marathon.
        Curr Sports Med Rep. 2018; 17: 151-158
        • Costrini A.M.
        • Pitt H.A.
        • Gustafson A.B.
        • Uddin D.E.
        Cardiovascular and metabolic manifestations of heat stroke and severe heat exhaustion.
        Am J Med. 1979; 66: 296-302
        • Tham M.K.
        • Cheng J.
        • Fock K.M.
        Heat stroke: a clinical review of 27 cases.
        Singapore Med J. 1989; 30: 137-140
        • Danks D.M.
        • Webb D.W.
        • Allen J.
        Heat illness in infants and young children.
        Br Med J. 1962; 2: 287-293
        • Guyatt G.H.
        • Oxman A.D.
        • Vist G.E.
        • et al.
        GRADE: an emerging consensus on rating quality of evidence and strength of recommendations.
        BMJ. 2008; 336: 924-926
        • Clements J.M.
        • Casa D.J.
        • Knight J.
        • et al.
        Ice-water immersion and cold-water immersion provide similar cooling rates in runners with exercise-induced hyperthermia.
        J Athl Train. 2002; 37: 146-150
        • DeMartini J.K.
        • Ranalli G.F.
        • Casa D.J.
        • et al.
        Comparison of body cooling methods on physiological and perceptual measures of mildly hyperthermic athletes.
        J Strength Cond Res. 2011; 25: 2065-2074
        • Peiffer J.J.
        • Abbiss C.R.
        • Watson G.
        • Nosaka K.
        • Laursen P.B.
        Effect of a 5-min cold-water immersion recovery on exercise performance in the heat.
        Br J Sports Med. 2010; 44: 461-465
        • Peiffer J.J.
        • Abbiss C.R.
        • Watson G.
        • Nosaka K.
        • Laursen P.B.
        Effect of cold-water immersion duration on body temperature and muscle function.
        J Sports Sci. 2009; 27: 987-993
        • Taylor N.A.S.
        • Caldwell J.N.
        • Van Den Heuvel A.M.J.
        • Patterson M.J.
        To cool, but not too cool: that is the question-immersion cooling for hyperthermia.
        Med Sci Sports Exerc. 2008; 40: 1962-1969
        • Walker A.
        • Driller M.
        • Brearley M.
        • Argus C.
        • Rattray B.
        Cold-water immersion and iced-slush ingestion are effective at cooling firefighters following a simulated search and rescue task in a hot environment.
        Appl Physiol Nutr Metab. 2014; 39: 1159-1166
        • Weiner J.S.
        • Khogali M.
        A physiological body-cooling unit for treatment of heat stroke.
        The Lancet. 1980; 315: 507-509
        • Caldwell J.N.
        • van den Heuvel A.M.J.
        • Kerry P.
        • Clark M.J.
        • Peoples G.E.
        • Taylor N.A.S.
        A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.
        Exp Physiol. 2018; 103: 512-522
        • Proulx C.I.
        • Ducharme M.B.
        • Kenny G.P.
        Effect of water temperature on cooling efficiency during hyperthermia in humans.
        J Appl Physiol. 2003; 94: 1317-1323
        • Proulx C.I.
        • Ducharme M.B.
        • Kenny G.P.
        Safe cooling limits from exercise-induced hyperthermia.
        Eur J Appl Physiol. 2006; 96: 434-445
        • Clapp A.J.
        • Bishop P.A.
        • Muir I.
        • Walker J.L.
        Rapid cooling techniques in joggers experiencing heat strain.
        J Sci Med Sport. 2001; 4: 160-167
        • Carter J.M.
        • Rayson M.P.
        • Wilkinson D.M.
        • Richmond V.
        • Blacker S.
        Strategies to combat heat strain during and after firefighting.
        J Therm Biol. 2007; 32: 109-116
        • Zhang Y.
        • Nepocatych S.
        • Katica C.
        • et al.
        Effect of half time cooling on thermoregulatory responses and soccer-specific performance tests.
        Montenegrin J Sports Sci Med. 2014; 3: 17-22
        • Barwood M.J.
        • Davey S.
        • House J.R.
        • Tipton M.J.
        Post-exercise cooling techniques in hot, humid conditions.
        Eur J Appl Physiol. 2009; 107: 385-396
        • Selkirk G.A.
        • McLellan T.M.
        • Wong J.
        Active versus passive cooling during work in warm environments while wearing firefighting protective clothing.
        J Occup Environ Hyg. 2004; 1: 521-531
        • Halson S.L.
        • Quod M.J.
        • Martin D.T.
        • Gardner A.S.
        • Ebert T.R.
        • Laursen P.B.
        Physiological responses to cold water immersion following cycling in the heat.
        Int J Sports Physiol Perform. 2008; 3: 331-346
        • Hosokawa Y.
        • Adams W.M.
        • Belval L.N.
        • Vandermark L.W.
        • Casa D.J.
        Tarp-assisted cooling as a method of whole-body cooling in hyperthermic individuals.
        Ann Emerg Med. 2017; 69: 347-352
        • Pointon M.
        • Duffield R.
        • Cannon J.
        • Marino F.E.
        Cold water immersion recovery following intermittent-sprint exercise in the heat.
        Eur J Appl Physiol. 2012; 112: 2483-2494
        • Lee E.C.
        • Watson G.
        • Casa D.
        • et al.
        Interleukin-6 responses to water immersion therapy after acute exercise heat stress: a pilot investigation.
        J Athl Train. 2012; 47: 655-663
        • Flouris A.D.
        • Wright-Beatty H.E.
        • Friesen B.J.
        • Casa D.J.
        • Kenny G.P.
        Treatment of exertional heat stress developed during low or moderate physical work.
        Eur J Appl Physiol. 2014; 114: 2551-2560
        • Gagnon D.
        • Lemire B.B.
        • Casa D.J.
        • Kenny G.P.
        Cold-water immersion and the treatment of hyperthermia: using 38.6 °C as a safe rectal temperature cooling limit.
        J Athl Train. 2010; 45: 439-444
        • Butts C.L.
        • McDermott B.P.
        • Buening B.J.
        • et al.
        Physiologic and perceptual responses to cold-shower cooling after exercise-induced hyperthermia.
        J Athl Train. 2016; 51: 252-257
        • Armstrong L.E.
        • Crago A.E.
        • Adams R.
        • Roberts W.O.
        • Maresh C.M.
        Whole-body cooling of hyperthermic runners: comparison of two field therapies.
        Am J Emerg Med. 1996; 14: 355-358
        • Friesen B.J.
        • Carter M.R.
        • Poirier M.P.
        • Kenny G.P.
        Water immersion in the treatment of exertional hyperthermia: physical determinants.
        Med Sci Sports Exerc. 2014; 46: 1727-1735
        • Kielblock A.J.
        • Van Rensburg J.P.
        • Franz R.M.
        Body cooling as a method for reducing hyperthermia. An evaluation of techniques.
        South Afr Med J Suid-Afr Tydskr Vir Geneeskd. 1986; 69: 378-380
        • Sefton J.M.
        • McAdam J.S.
        • Pascoe D.D.
        • et al.
        Evaluation of 2 heat-mitigation methods in army trainees.
        J Athl Train. 2016; 51: 936-945
        • Lissoway J.B.
        • Lipman G.S.
        • Grahn D.A.
        • et al.
        Novel application of chemical cold packs for treatment of exercise-induced hyperthermia: a randomized controlled trial.
        Wilderness Environ Med. 2015; 26: 173-179
        • Brade C.
        • Dawson B.
        • Wallman K.
        • Polglaze T.
        Postexercise cooling rates in 2 cooling jackets.
        J Athl Train. 2010; 45: 164-169
        • Lopez R.M.
        • Cleary M.A.
        • Jones L.C.
        • Zuri R.E.
        Thermoregulatory influence of a cooling vest on hyperthermic athletes.
        J Athl Train. 2008; 43: 55-61
        • Maroni T.
        • Dawson B.
        • Barnett K.
        • et al.
        Effectiveness of hand cooling and a cooling jacket on post-exercise cooling rates in hyperthermic athletes.
        Eur J Sport Sci. 2018; 18: 441-449
        • Smith C.R.
        • Butts C.L.
        • Adams J.D.
        • et al.
        Effect of a cooling kit on physiology and performance following exercise in the heat.
        J Sport Rehabil. 2018; 27: 413-418
        • Butts C.L.
        • Luhring K.E.
        • Smith C.R.
        • et al.
        Effects of mild hypohydration on cooling during cold-water immersion following exertional hyperthermia.
        Eur J Appl Physiol. 2016; 116: 687-695
        • Butts C.L.
        • Spisla D.L.
        • Adams J.
        • et al.
        Effectiveness of ice-sheet cooling following exertional hyperthermia.
        Mil Med. 2017; 182 (e1951–7)
        • Reynolds K.A.
        • Evanich J.J.
        • Eberman L.E.
        Reflective blankets do not effect cooling rates after running in hot.
        Humid Conditions. 2015; : 97-103
        • Adams W.M.
        • Hosokawa Y.
        • Adams E.L.
        • Belval L.N.
        • Huggins R.A.
        • Casa D.J.
        Reduction in body temperature using hand cooling versus passive rest after exercise in the heat.
        J Sci Med Sport. 2016; 19: 936-940
        • Zhang Y.
        • Bishop P.A.
        • Casaru C.
        • Davis J.K.
        A new hand-cooling device to enhance firefighter heat strain recovery.
        J Occup Environ Hyg. 2009; 6: 283-288
        • Hostler D.
        • Franco V.
        • Martin-Gill C.
        • Roth R.N.
        Recognition and treatment of exertional heat illness at a marathon race.
        Prehosp Emerg Care. 2014; 18: 456-459
        • Zhang Y.
        • Davis J.-K.
        • Casa D.J.
        • Bishop P.A.
        Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis.
        Med Sci Sports Exerc. 2015; 47: 2464-2472
        • Boehm K.E.
        • Miller K.C.
        Does gender affect rectal temperature cooling rates? A critically appraised topic.
        J Sport Rehabil. 2019; 28: 522-525
        • Shephard R.J.
        Cooling methods used in the treatment of exertional heat illness.
        Yearb Sports Med. 2006; 2006: 310-314
        • Gaudio F.G.
        • Grissom C.K.
        Cooling methods in heat stroke.
        J Emerg Med. 2016; 50: 607-616
        • Truxton T.T.
        • Miller K.C.
        Can temperate-water immersion effectively reduce rectal temperature in exertional heat stroke? A critically appraised topic.
        J Sport Rehabil. 2017; 26: 447-451
        • McDermott B.P.
        • Casa D.J.
        • Ganio M.S.
        • et al.
        Acute whole-body cooling for exercise-induced hyperthermia: a systematic review.
        J Athl Train. 2009; 44: 84-93
        • Morrison K.E.
        • Desai N.
        • McGuigan C.
        • Lennon M.
        • Godek S.F.
        Effects of Intravenous cold saline on hyperthermic athletes representative of large football players and small endurance runners.
        Clin J Sport Med. 2018; 28: 493-499
        • Sloan B.K.
        • Kraft E.M.
        • Clark D.
        • Schmeissing S.W.
        • Byrne B.C.
        • Rusyniak D.E.
        On-site treatment of exertional heat stroke.
        Am J Sports Med. 2015; 43: 823-829
        • Asplund C.A.
        • O’Connor F.G.
        • Noakes T.D.
        Exercise-associated collapse: an evidence-based review and primer for clinicians.
        Br J Sports Med. 2011; 45: 1157-1162
        • Casa D.J.
        • Hosokawa Y.
        • Belval L.N.
        • Adams W.M.
        • Stearns R.L.
        Preventing death from exertional heat stroke—the long road from evidence to policy.
        Kinesiol Rev. 2017; 6: 99-109
        • Niven D.J.
        • Gaudet J.E.
        • Laupland K.B.
        • Mrklas K.J.
        • Roberts D.J.
        • Stelfox H.T.
        Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis.
        Ann Intern Med. 2015; 163: 768-777
        • Sinclair W.H.
        • Rudzki S.J.
        • Leicht A.S.
        • Fogarty A.L.
        • Winter S.K.
        • Patterson M.J.
        Efficacy of field treatments to reduce body core temperature in hyperthermic subjects.
        Med Sci Sports Exerc. 2009; 41: 1984-1990
        • Luhring K.E.
        • Butts C.L.
        • Smith C.R.
        • et al.
        Cooling effectiveness of a modified cold-water immersion method after exercise-induced hyperthermia.
        J Athl Train. 2016; 51: 946-951
        • Nye E.A.
        • Eberman L.E.
        • Games K.E.
        • Carriker C.
        Comparison of whole-body cooling techniques for athletes and military personnel.
        Int J Exerc Sci. 2017; 10: 294-300