Advertisement
ILCOR Summary Statement| Volume 145, P95-150, December 2019

2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations

      Abstract

      The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Resuscitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. International Liaison Committee on Resuscitation (ILCOR). Consensus on Science With Treatment Recommendations (CoSTR). https://costr.ilcor.org/document. [Accessed 22 May 2019].

        • Guyatt G.
        • Oxman A.D.
        • Akl E.A.
        • et al.
        GRADE guidelines, 1: introduction: GRADE evidence profiles and summary of findings tables.
        J Clin Epidemiol. 2011; 64: 383-394https://doi.org/10.1016/j.jclinepi.2010.04.026
        • Nikolaou N.
        • Dainty K.N.
        • Couper K.
        • et al.
        A systematic review and meta-analysis of the effect of dispatcher-assisted CPR on outcomes from sudden cardiac arrest in adults and children.
        Resuscitation. 2019; 138: 82-105https://doi.org/10.1016/j.resuscitation.2019.02.035
        • Granfeldt A.
        • Avis S.R.
        • Nicholson T.C.
        • et al.
        Advanced airway management during adult cardiac arrest: a systematic review.
        Resuscitation. 2019; 139: 133-143https://doi.org/10.1016/j.resuscitation.2019.04.003
        • Holmberg M.J.
        • Issa M.S.
        • Moskowitz A.
        • et al.
        Vasopressors during adult cardiac arrest: a systematic review and meta-analysis.
        Resuscitation. 2019; 139: 106-121https://doi.org/10.1016/j.resuscitation.2019.04.008
        • Holmberg M.J.
        • Geri G.
        • Wiberg S.
        • et al.
        Extracorporeal cardiopulmonary resuscitation for cardiac arrest: a systematic review.
        Resuscitation. 2018; 131: 91-100https://doi.org/10.1016/j.resuscitation.2018.07.029
        • Lavonas E.J.
        • Ohshimo S.
        • Nation K.
        • et al.
        Advanced airway interventions for paediatric cardiac arrest: a systematic review and meta-analysis.
        Resuscitation. 2019; 138: 114-128https://doi.org/10.1016/j.resuscitation.2019.02.040
        • Buick J.E.
        • Wallner C.
        • Aickin R.
        • et al.
        Paediatric targeted temperature management post cardiac arrest: a systematic review and meta-analysis.
        Resuscitation. 2019; 139: 65-75https://doi.org/10.1016/j.resuscitation.2019.03.038
        • Welsford M.
        • Nishiyama C.
        • Shortt C.
        • et al.
        Room air for initiating term newborn resuscitation: a systematic review with meta-analysis.
        Pediatrics. 2019; 143https://doi.org/10.1542/peds.2018-1825
        • Welsford M.
        • Nishiyama C.
        • Shortt C.
        • et al.
        Initial oxygen use for preterm newborn resuscitation: a systematic review with meta-analysis.
        Pediatrics. 2019; 143e20181828https://doi.org/10.1542/peds.2018-1828
        • Yeung J.
        • Matsuyama T.
        • Bray J.
        • Reynolds J.
        • Skrifvars M.B.
        Does care at a cardiac arrest centre improve outcome after out-of-hospital cardiac arrest? A systematic review.
        Resuscitation. 2019; 137: 102-115https://doi.org/10.1016/j.resuscitation.2019.02.006
        • Jensen J.L.
        • Ohshimo S.
        • Cassan P.
        • et al.
        Immediate interventions for presyncope of vasovagal or orthostatic origin: a systematic review.
        Prehosp Emerg Care. 2019; : 1-63https://doi.org/10.1080/10903127.2019.1605431
        • Perkins G.D.
        • Travers A.H.
        • Berg R.A.
        • et al.
        Part 3: adult basic life support and automated external defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations.
        Resuscitation. 2015; 95: e43-e69https://doi.org/10.1016/j.resuscitation.2015.07.041
        • Travers A.H.
        • Perkins G.D.
        • Berg R.A.
        • et al.
        Part 3: adult basic life support and automated external defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.
        Circulation. 2015; 132: S51-S83https://doi.org/10.1161/CIR.0000000000000272
      2. Olasveengen TM, Mancini ME, Vaillancourt C, et al. Emergency care: dispatcher instruction in CPR for adults: Consensus on Science With Treatment Recommendations. International Liaison Committee on Resuscitation (ILCOR) Basic Life Support Task Force. February 25, 2019. https://costr.ilcor.org/document/emergency-care-dispatcher-instruction-in-cpr. [Accessed 22 May 2019].

      3. US National Library of Medicine. ClinicalTrials.gov database. https://www.clinicaltrials.gov. [Accessed 10 April 2019].

        • Culley L.L.
        • Clark J.J.
        • Eisenberg M.S.
        • Larsen M.P.
        Dispatcher-assisted telephone CPR: common delays and time standards for delivery.
        Ann Emerg Med. 1991; 20: 362-366https://doi.org/10.1016/s0196-0644(05)81655-5
        • Song K.J.
        • Shin S.D.
        • Park C.B.
        • et al.
        Dispatcher-assisted bystander cardiopulmonary resuscitation in a metropolitan city: a before-after population-based study.
        Resuscitation. 2014; 85: 34-41https://doi.org/10.1016/j.resuscitation.2013.06.004
        • Stipulante S.
        • Tubes R.
        • El Fassi M.
        • et al.
        Implementation of the ALERT algorithm, a new dispatcher-assisted telephone cardiopulmonary resuscitation protocol, in non-Advanced Medical Priority Dispatch System (AMPDS) emergency medical services centres.
        Resuscitation. 2014; 85: 177-181https://doi.org/10.1016/j.resuscitation.2013.10.005
        • Vaillancourt C.
        • Verma A.
        • Trickett J.
        • et al.
        Evaluating the effectiveness of dispatch-assisted cardiopulmonary resuscitation instructions.
        Acad Emerg Med. 2007; 14: 877-883https://doi.org/10.1197/j.aem.2007.06.021
        • Harjanto S.
        • Na M.X.
        • Hao Y.
        • et al.
        A before-after interventional trial of dispatcher-assisted cardio-pulmonary resuscitation for out-of-hospital cardiac arrests in Singapore.
        Resuscitation. 2016; 102: 85-93https://doi.org/10.1016/j.resuscitation.2016.02.014
        • Besnier E.
        • Damm C.
        • Jardel B.
        • Veber B.
        • Compere V.
        • Dureuil B.
        Dispatcher-assisted cardiopulmonary resuscitation protocol improves diagnosis and resuscitation recommendations for out-of-hospital cardiac arrest.
        Emerg Med Australas. 2015; 27: 590-596https://doi.org/10.1111/1742-6723.12493
        • Bång A.
        • Biber B.
        • Isaksson L.
        • Lindqvist J.
        • Herlitz J.
        Evaluation of dispatcher-assisted cardiopulmonary resuscitation.
        Eur J Emerg Med. 1999; 6: 175-183
        • Kuisma M.
        • Boyd J.
        • Väyrynen T.
        • Repo J.
        • Nousila-Wiik M.
        • Holmström P.
        Emergency call processing and survival from out-of-hospital ventricular fibrillation.
        Resuscitation. 2005; 67: 89-93https://doi.org/10.1016/j.resuscitation.2005.04.008
        • Akahane M.
        • Ogawa T.
        • Tanabe S.
        • et al.
        Impact of telephone dispatcher assistance on the outcomes of pediatric out-of-hospital cardiac arrest.
        Crit Care Med. 2012; 40: 1410-1416https://doi.org/10.1097/CCM.0b013e31823e99ae
        • Goto Y.
        • Maeda T.
        • Goto Y.
        Impact of dispatcher-assisted bystander cardiopulmonary resuscitation on neurological outcomes in children with out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study.
        J Am Heart Assoc. 2014; 3e000499https://doi.org/10.1161/JAHA.113.000499
        • Japanese Circulation Society Resuscitation Science Study Group
        Chest-compression-only bystander cardiopulmonary resuscitation in the 30:2 compression-to-ventilation ratio era: nationwide observational study.
        Circ J. 2013; 77: 2742-2750
        • Hiltunen P.V.
        • Silfvast T.O.
        • Jäntti T.H.
        • Kuisma M.J.
        • Kurola J.O.
        • on behalf of the FINNRESUSCI Prehospital Study Group
        Emergency dispatch process and patient outcome in bystander-witnessed out-of-hospital cardiac arrest with a shockable rhythm.
        Eur J Emerg Med. 2015; 22: 266-272https://doi.org/10.1097/MEJ.0000000000000151
        • Fukushima H.
        • Panczyk M.
        • Hu C.
        • et al.
        Description of abnormal breathing is associated with improved outcomes and delayed telephone cardiopulmonary resuscitation instructions.
        J Am Heart Assoc. 2017; 6e005058https://doi.org/10.1161/JAHA.116.005058
        • Moriwaki Y.
        • Tahara Y.
        • Kosuge T.
        • Suzuki N.
        The effect of telephone advice on cardiopulmonary resuscitation (CPR) on the rate of bystander CPR in out-of-hospital cardiopulmonary arrest in a typical urban area.
        Hong Kong J Emerg Med. 2016; 23: 220-226https://doi.org/10.1177/102490791602300403
        • Ro Y.S.
        • Shin S.D.
        • Song K.J.
        • et al.
        Effects of dispatcher-assisted cardiopulmonary resuscitation on survival outcomes in infants, children, and adolescents with out-of-hospital cardiac arrests.
        Resuscitation. 2016; 108: 20-26https://doi.org/10.1016/j.resuscitation.2016.08.026
        • Takahashi H.
        • Sagisaka R.
        • Natsume Y.
        • Tanaka S.
        • Takyu H.
        • Tanaka H.
        Does dispatcher-assisted CPR generate the same outcomes as spontaneously delivered bystander CPR in Japan?.
        Am J Emerg Med. 2018; 36: 384-391https://doi.org/10.1016/j.ajem.2017.08.034
        • Wu Z.
        • Panczyk M.
        • Spaite D.W.
        • et al.
        Telephone cardiopulmonary resuscitation is independently associated with improved survival and improved functional outcome after out-of-hospital cardiac arrest.
        Resuscitation. 2018; 122: 135-140https://doi.org/10.1016/j.resuscitation.2017.07.016
        • Ro Y.S.
        • Shin S.D.
        • Lee Y.J.
        • et al.
        Effect of dispatcher-assisted cardiopulmonary resuscitation program and location of out-of-hospital cardiac arrest on survival and neurologic outcome.
        Ann Emerg Med. 2017; 69 (52–61.e1)https://doi.org/10.1016/j.annemergmed.2016.07.028
        • Chang I.
        • Lee S.C.
        • Shin S.D.
        • et al.
        Effects of dispatcher-assisted bystander cardiopulmonary resuscitation on neurological recovery in paediatric patients with out-of-hospital cardiac arrest based on the pre-hospital emergency medical service response time interval.
        Resuscitation. 2018; 130: 49-56https://doi.org/10.1016/j.resuscitation.2018.06.029
        • Viereck S.
        • Møller T.P.
        • Ersbøll A.K.
        • et al.
        Recognising out-of-hospital cardiac arrest during emergency calls increases bystander cardiopulmonary resuscitation and survival.
        Resuscitation. 2017; 115: 141-147https://doi.org/10.1016/j.resuscitation.2017.04.006
        • Shah M.
        • Bartram C.
        • Irwin K.
        • et al.
        Evaluating dispatch-assisted CPR using the CARES registry.
        Prehosp Emerg Care. 2018; 22: 222-228https://doi.org/10.1080/10903127.2017.1376133
        • Rea T.D.
        • Eisenberg M.S.
        • Culley L.L.
        • Becker L.
        Dispatcher-assisted cardiopulmonary resuscitation and survival in cardiac arrest.
        Circulation. 2001; 104: 2513-2516https://doi.org/10.1161/hc4601.099468
        • Chang I.
        • Ro Y.S.
        • Shin S.D.
        • Song K.J.
        • Park J.H.
        • Kong S.Y.
        Association of dispatcher-assisted bystander cardiopulmonary resuscitation with survival outcomes after pediatric out-of-hospital cardiac arrest by community property value.
        Resuscitation. 2018; 132: 120-126https://doi.org/10.1016/j.resuscitation.2018.09.008
        • Takei Y.
        • Kamikura T.
        • Nishi T.
        • et al.
        Recruitments of trained citizen volunteering for conventional cardiopulmonary resuscitation are necessary to improve the outcome after out-of-hospital cardiac arrests in remote time-distance area: a nationwide population-based study.
        Resuscitation. 2016; 105: 100-108https://doi.org/10.1016/j.resuscitation.2016.05.021
        • Lewis M.
        • Stubbs B.A.
        • Eisenberg M.S.
        Dispatcher-assisted cardiopulmonary resuscitation: time to identify cardiac arrest and deliver chest compression instructions.
        Circulation. 2013; 128: 1522-1530https://doi.org/10.1161/CIRCULATIONAHA.113.002627
        • Dami F.
        • Heymann E.
        • Pasquier M.
        • Fuchs V.
        • Carron P.N.
        • Hugli O.
        Time to identify cardiac arrest and provide dispatch-assisted cardio-pulmonary resuscitation in a criteria-based dispatch system.
        Resuscitation. 2015; 97: 27-33https://doi.org/10.1016/j.resuscitation.2015.09.390
        • Oman G.
        • Bury G.
        Use of telephone CPR advice in Ireland: uptake by callers and delays in the assessment process.
        Resuscitation. 2016; 102: 6-10https://doi.org/10.1016/j.resuscitation.2016.02.006
        • Eisenberg M.S.
        • Cummins R.O.
        • Litwin P.
        • Hallstrom A.P.
        • Hearne T.
        Dispatcher cardiopulmonary resuscitation instruction via telephone.
        Crit Care Med. 1985; 13: 923-924https://doi.org/10.1097/00003246-198511000-00017
        • Park J.H.
        • Ro Y.S.
        • Shin S.D.
        • Song K.J.
        • Hong K.J.
        • Kong S.Y.
        Dispatcher-assisted bystander cardiopulmonary resuscitation in rural and urban areas and survival outcomes after out-of-hospital cardiac arrest.
        Resuscitation. 2018; 125: 1-7https://doi.org/10.1016/j.resuscitation.2018.01.026
        • Gotz J.
        • Petutschnigg B.
        • Wasler A.
        • Wran-Schumer D.
        • Hansak P.
        Bystander resuscitation as a measure of success [in German].
        Notfall Rettungsmed. 2017; 20: 470-476
        • Hasselqvist-Ax I.
        • Riva G.
        • Herlitz J.
        • et al.
        Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest.
        N Engl J Med. 2015; 372: 2307-2315https://doi.org/10.1056/NEJMoa1405796
        • Soar J.
        • Callaway C.W.
        • Aibiki M.
        • et al.
        Part 4: advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations.
        Resuscitation. 2015; 95: e71-e120https://doi.org/10.1016/j.resuscitation.2015.07.042
        • Andersen L.W.
        • Granfeldt A.
        • Callaway C.W.
        • et al.
        Association between tracheal intubation during adult in-hospital cardiac arrest and survival.
        JAMA. 2017; 317: 494-506https://doi.org/10.1001/jama.2016.20165
        • McMullan J.
        • Gerecht R.
        • Bonomo J.
        • et al.
        Airway management and out-of-hospital cardiac arrest outcome in the CARES registry.
        Resuscitation. 2014; 85: 617-622https://doi.org/10.1016/j.resuscitation.2014.02.007
        • Benger J.R.
        • Kirby K.
        • Black S.
        • et al.
        Effect of a strategy of a supraglottic airway device vs tracheal intubation during out-of-hospital cardiac arrest on functional outcome: the AIRWAYS-2 randomized clinical trial.
        JAMA. 2018; 320: 779-791https://doi.org/10.1001/jama.2018.11597
        • Jabre P.
        • Penaloza A.
        • Pinero D.
        • et al.
        Effect of bag-mask ventilation vs endotracheal intubation during cardiopulmonary resuscitation on neurological outcome after out-of-hospital cardiorespiratory arrest: a randomized clinical trial.
        JAMA. 2018; 319: 779-787https://doi.org/10.1001/jama.2018.0156
        • Wang H.E.
        • Schmicker R.H.
        • Daya M.R.
        • et al.
        Effect of a strategy of initial laryngeal tube insertion vs endotracheal intubation on 72-hour survival in adults with out-of-hospital cardiac arrest: a randomized clinical trial.
        JAMA. 2018; 320: 769-778https://doi.org/10.1001/jama.2018.7044
      4. Soar J, Nicholson TC, Parr MJ, et al. Advanced airway management during adult cardiac arrest: Consensus on Science With Treatment Recommendations. International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force. April 4, 2019. https://costr.ilcor.org/document/advanced-airway-management-during-adult-cardiac-arrest. [Accessed 22 May 2019].

        • Goldenberg I.F.
        • Campion B.C.
        • Siebold C.M.
        • McBride J.W.
        • Long L.A.
        Esophageal gastric tube airway vs endotracheal tube in prehospital cardiopulmonary arrest.
        Chest. 1986; 90: 90-96https://doi.org/10.1378/chest.90.1.90
        • Staudinger T.
        • Brugger S.
        • Röggla M.
        • et al.
        Comparison of the Combitube with the endotracheal tube in cardiopulmonary resuscitation in the prehospital phase [in German].
        Wien Klin Wochenschr. 1994; 106: 412-415
        • Rumball C.J.
        • MacDonald D.
        The PTL, Combitube, laryngeal mask, and oral airway: a randomized prehospital comparative study of ventilatory device effectiveness and cost-effectiveness in 470 cases of cardiorespiratory arrest.
        Prehosp Emerg Care. 1997; 1: 1-10
        • Rabitsch W.
        • Schellongowski P.
        • Staudinger T.
        • et al.
        Comparison of a conventional tracheal airway with the Combitube in an urban emergency medical services system run by physicians.
        Resuscitation. 2003; 57: 27-32
        • Maignan M.
        • Koch F.X.
        • Kraemer M.
        • et al.
        Impact of laryngeal tube use on chest compression fraction during out-of-hospital cardiac arrest: a prospective alternate month study.
        Resuscitation. 2015; 93: 113-117https://doi.org/10.1016/j.resuscitation.2015.06.002
        • Ono Y.
        • Hayakawa M.
        • Maekawa K.
        • et al.
        Should laryngeal tubes or masks be used for out-of-hospital cardiac arrest patients?.
        Am J Emerg Med. 2015; 33: 1360-1363https://doi.org/10.1016/j.ajem.2015.07.043
        • Benger J.
        • Coates D.
        • Davies S.
        • et al.
        Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of out of hospital cardiac arrest: a feasibility study.
        Br J Anaesth. 2016; 116: 262-268https://doi.org/10.1093/bja/aev477
        • Fiala A.
        • Lederer W.
        • Neumayr A.
        • et al.
        EMT-led laryngeal tube vs. face-mask ventilation during cardiopulmonary resuscitation: a multicenter prospective randomized trial.
        Scand J Trauma Resusc Emerg Med. 2017; 25: 104https://doi.org/10.1186/s13049-017-0446-1
        • Callaway C.W.
        • Soar J.
        • Aibiki M.
        • et al.
        Part 4: advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.
        Circulation. 2015; 132: S84-S145https://doi.org/10.1161/CIR. 0000000000000273
        • Pearson J.W.
        • Redding J.S.
        Epinephrine in cardiac resuscitation.
        Am Heart J. 1963; 66: 210-214https://doi.org/10.1016/0002-8703(63)90036-x
        • Redding J.S.
        • Pearson J.W.
        Resuscitation from ventricular fibrillation: drug therapy.
        JAMA. 1968; 203: 255-260
        • Perkins G.D.
        • Ji C.
        • Deakin C.D.
        • et al.
        A randomized trial of epinephrine in out-of-hospital cardiac arrest.
        N Engl J Med. 2018; 379: 711-721https://doi.org/10.1056/NEJMoa1806842
      5. Welsford M, Berg KM, Neumar RW, et al. Vasopressors in adult cardiac arrest: Consensus on Science With Treatment Recommendations. International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force. April 4, 2019. https://costr.ilcor.org/document/vasopressors-in-adult-cardiac-arrest. [Accessed 22 May 2019].

        • Jacobs I.G.
        • Finn J.C.
        • Jelinek G.A.
        • Oxer H.F.
        • Thompson P.L.
        Effect of adrenaline on survival in out-of-hospital cardiac arrest: a randomised double-blind placebo-controlled trial.
        Resuscitation. 2011; 82: 1138-1143https://doi.org/10.1016/j.resuscitation.2011.06.029
        • Perkins G.D.
        • Kenna C.
        • Ji C.
        • et al.
        The effects of adrenaline in out of hospital cardiac arrest with shockable and non-shockable rhythms: findings from the PACA and PARAMEDIC-2 randomised controlled trials.
        Resuscitation. 2019; 140: 55-63https://doi.org/10.1016/j.resuscitation.2019.05.007
        • Lindner K.H.
        • Dirks B.
        • Strohmenger H.U.
        • Prengel A.W.
        • Lindner I.M.
        • Lurie K.G.
        Randomised comparison of epinephrine and vasopressin in patients with out-of-hospital ventricular fibrillation.
        Lancet. 1997; 349: 535-537https://doi.org/10.1016/S0140-6736(97)80087-6
        • Wenzel V.
        • Krismer A.C.
        • Arntz H.R.
        • et al.
        A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation.
        N Engl J Med. 2004; 350: 105-113https://doi.org/10.1056/NEJMoa025431
        • Mukoyama T.
        • Kinoshita K.
        • Nagao K.
        • Tanjoh K.
        Reduced effectiveness of vasopressin in repeated doses for patients undergoing prolonged cardiopulmonary resuscitation.
        Resuscitation. 2009; 80: 755-761https://doi.org/10.1016/j.resuscitation.2009.04.005
        • Stiell I.G.
        • Hebert P.C.
        • Weitzman B.N.
        • et al.
        High-dose epinephrine in adult cardiac arrest.
        N Engl J Med. 1992; 327: 1045-1050https://doi.org/10.1056/NEJM199210083271502
        • Callaway C.W.
        • Hostler D.
        • Doshi A.A.
        • et al.
        Usefulness of vasopressin administered with epinephrine during out-of-hospital cardiac arrest.
        Am J Cardiol. 2006; 98: 1316-1321https://doi.org/10.1016/j.amjcard.2006.06.022
        • Gueugniaud P.Y.
        • David J.S.
        • Chanzy E.
        • et al.
        Vasopressin and epinephrine vs. epinephrine alone in cardiopulmonary resuscitation.
        N Engl J Med. 2008; 359: 21-30https://doi.org/10.1056/NEJMoa0706873
        • Ducros L.
        • Vicaut E.
        • Soleil C.
        • et al.
        Effect of the addition of vasopressin or vasopressin plus nitroglycerin to epinephrine on arterial blood pressure during cardiopulmonary resuscitation in humans.
        J Emerg Med. 2011; 41: 453-459https://doi.org/10.1016/j.jemermed.2010.02.030
        • Stiell I.G.
        • Hébert P.C.
        • Wells G.A.
        • et al.
        Vasopressin versus epinephrine for inhospital cardiac arrest: a randomised controlled trial.
        Lancet. 2001; 358: 105-109https://doi.org/10.1016/S0140-6736(01)05328-4
        • Conrad S.A.
        • Broman L.M.
        • Taccone F.S.
        • et al.
        The Extracorporeal Life Support Organization Maastricht Treaty for Nomenclature in Extracorporeal Life Support: a position paper of the Extracorporeal Life Support Organization.
        Am J Respir Crit Care Med. 2018; 198: 447-451https://doi.org/10.1164/rccm.201710-2130CP
      6. Donnino MW, Andersen LW, Deakin CD, et al. Extracorporeal cardiopulmonary resuscitation (ECPR) for cardiac arrest–adults: Consensus on Science With Treatment Recommendations. International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force, March 21, 2019. https://costr.ilcor.org/document/extracorporeal-cardiopulmonary-resuscitation-ecpr-for-cardiac-arrest-adults. [Accessed 22 May 2019].

        • Agostinucci J.M.
        • Ruscev M.
        • Galinski M.
        • et al.
        Out-of-hospital use of an automated chest compression device: facilitating access to extracorporeal life support or non-heart-beating organ procurement.
        Am J Emerg Med. 2011; 29: 1169-1172https://doi.org/10.1016/j.ajem.2010.06.029
        • Blumenstein J.
        • Leick J.
        • Liebetrau C.
        • et al.
        Extracorporeal life support in cardiovascular patients with observed refractory in-hospital cardiac arrest is associated with favourable short and long-term outcomes: a propensity-matched analysis.
        Eur Heart J Acute Cardiovasc Care. 2016; 5: 13-22https://doi.org/10.1177/2048872615612454
        • Cesana F.
        • Avalli L.
        • Garatti L.
        • et al.
        Effects of extracorporeal cardiopulmonary resuscitation on neurological and cardiac outcome after ischaemic refractory cardiac arrest.
        Eur Heart J Acute Cardiovasc Care. 2018; 7: 432-441https://doi.org/10.1177/2048872617737041
        • Chen Y.S.
        • Lin J.W.
        • Yu H.Y.
        • et al.
        Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis.
        Lancet. 2008; 372: 554-561https://doi.org/10.1016/S0140-6736(08)60958-7
        • Cho Y.H.
        • Kim W.S.
        • Sung K.
        • et al.
        Management of cardiac arrest caused by acute massive pulmonary thromboembolism: importance of percutaneous cardiopulmonary support.
        ASAIO J. 2014; 60: 280-283https://doi.org/10.1097/MAT.0000000000000063
        • Choi D.H.
        • Kim Y.J.
        • Ryoo S.M.
        • et al.
        Extracorporeal cardiopulmonary resuscitation among patients with out-of-hospital cardiac arrest.
        Clin Exp Emerg Med. 2016; 3: 132-138https://doi.org/10.15441/ceem.16.145
        • Chou T.H.
        • Fang C.C.
        • Yen Z.S.
        • et al.
        An observational study of extracorporeal CPR for in-hospital cardiac arrest secondary to myocardial infarction.
        Emerg Med J. 2014; 31: 441-447https://doi.org/10.1136/emermed-2012-202173
        • Hase M.
        • Tsuchihashi K.
        • Fujii N.
        • et al.
        Early defibrillation and circulatory support can provide better long-term outcomes through favorable neurological recovery in patients with out-of-hospital cardiac arrest of cardiac origin.
        Circ J. 2005; 69: 1302-1307
        • Kim S.J.
        • Jung J.S.
        • Park J.H.
        • Park J.S.
        • Hong Y.S.
        • Lee S.W.
        An optimal transition time to extracorporeal cardiopulmonary resuscitation for predicting good neurological outcome in patients with out-of-hospital cardiac arrest: a propensity-matched study.
        Crit Care. 2014; 18: 535https://doi.org/10.1186/s13054-014-0535-8
        • Lee S.H.
        • Jung J.S.
        • Lee K.H.
        • Kim H.J.
        • Son H.S.
        • Sun K.
        Comparison of extracorporeal cardiopulmonary resuscitation with conventional cardiopulmonary resuscitation: is extracorporeal cardiopulmonary resuscitation beneficial?.
        Korean J Thorac Cardiovasc Surg. 2015; 48: 318-327https://doi.org/10.5090/kjtcs.2015.48.5.318
        • Lin J.W.
        • Wang M.J.
        • Yu H.Y.
        • et al.
        Comparing the survival between extracorporeal rescue and conventional resuscitation in adult in-hospital cardiac arrests: propensity analysis of three-year data.
        Resuscitation. 2010; 81: 796-803https://doi.org/10.1016/j.resuscitation.2010.03.002
        • Maekawa K.
        • Tanno K.
        • Hase M.
        • Mori K.
        • Asai Y.
        Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis.
        Crit Care Med. 2013; 41: 1186-1196https://doi.org/10.1097/CCM.0b013e31827ca4c8
        • Poppe M.
        • Weiser C.
        • Holzer M.
        • et al.
        The incidence of “load&go” out-of-hospital cardiac arrest candidates for emergency department utilization of emergency extracorporeal life support: a one-year review.
        Resuscitation. 2015; 91: 131-136https://doi.org/10.1016/j.resuscitation.2015.03.003
        • Sakamoto T.
        • Morimura N.
        • Nagao K.
        • et al.
        Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: a prospective observational study.
        Resuscitation. 2014; 85: 762-768https://doi.org/10.1016/j.resuscitation.2014.01.031
        • Schober A.
        • Sterz F.
        • Herkner H.
        • et al.
        Emergency extracorporeal life support and ongoing resuscitation: a retrospective comparison for refractory out-of-hospital cardiac arrest.
        Emerg Med J. 2017; 34: 277-281https://doi.org/10.1136/emermed-2015-205232
        • Shin T.G.
        • Choi J.H.
        • Jo I.J.
        • et al.
        Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: a comparison with conventional cardiopulmonary resuscitation.
        Crit Care Med. 2011; 39: 1-7https://doi.org/10.1097/CCM.0b013e3181feb339
        • Shin T.G.
        • Jo I.J.
        • Sim M.S.
        • et al.
        Two-year survival and neurological outcome of in-hospital cardiac arrest patients rescued by extracorporeal cardiopulmonary resuscitation.
        Int J Cardiol. 2013; 168: 3424-3430https://doi.org/10.1016/j.ijcard.2013.04.183
        • Siao F.Y.
        • Chiu C.C.
        • Chiu C.W.
        • et al.
        Managing cardiac arrest with refractory ventricular fibrillation in the emergency department: conventional cardiopulmonary resuscitation versus extracorporeal cardiopulmonary resuscitation.
        Resuscitation. 2015; 92: 70-76https://doi.org/10.1016/j.resuscitation.2015.04.016
        • Tanno K.
        • Itoh Y.
        • Takeyama Y.
        • Nara S.
        • Mori K.
        • Asai Y.
        Utstein style study of cardiopulmonary bypass after cardiac arrest.
        Am J Emerg Med. 2008; 26: 649-654https://doi.org/10.1016/j.ajem.2007.09.019
        • Venturini J.M.
        • Retzer E.
        • Estrada J.R.
        • et al.
        Mechanical chest compressions improve rate of return of spontaneous circulation and allow for initiation of percutaneous circulatory support during cardiac arrest in the cardiac catheterization laboratory.
        Resuscitation. 2017; 115: 56-60https://doi.org/10.1016/j.resuscitation.2017.03.037
        • Yannopoulos D.
        • Bartos J.A.
        • Martin C.
        • et al.
        Minnesota Resuscitation Consortium’s advanced perfusion and reperfusion cardiac life support strategy for out-of-hospital refractory ventricular fibrillation.
        J Am Heart Assoc. 2016; 5003732https://doi.org/10.1161/JAHA.116.003732
        • Yannopoulos D.
        • Bartos J.A.
        • Raveendran G.
        • et al.
        Coronary artery disease in patients with out-of-hospital refractory ventricular fibrillation cardiac arrest.
        J Am Coll Cardiol. 2017; 70: 1109-1117https://doi.org/10.1016/j.jacc.2017.06.059
      7. Tijssen JA, Aickin RP, Atkins D, et al. Dispatcher instruction in CPR (pediatrics): Consensus on Science With Treatment Recommendations. International Liaison Committee on Resuscitation (ILCOR) Pediatrics Task Force. February 25, 2019. https://costr.ilcor.org/document/dispatcher-instruction-in-cpr-pediatrics. [Accessed 22 May 2019].

        • Ro Y.S.
        • Shin S.D.
        • Song K.J.
        • Hong S.O.
        • Kim Y.T.
        • Cho S.I.
        Bystander cardiopulmonary resuscitation training experience and self-efficacy of age and gender group: a nationwide community survey.
        Am J Emerg Med. 2016; 34: 1331-1337https://doi.org/10.1016/j.ajem.2015.12.001
        • Bohm K.
        • Vaillancourt C.
        • Charette M.L.
        • Dunford J.
        • Castrén M.
        In patients with out-of-hospital cardiac arrest, does the provision of dispatch cardiopulmonary resuscitation instructions as opposed to no instructions improve outcome: a systematic review of the literature.
        Resuscitation. 2011; 82: 1490-1495https://doi.org/10.1016/j.resuscitation.2011.09.004
        • Leong B.S.
        Bystander CPR and survival.
        Singapore Med J. 2011; 52: 573-575
        • Lerner E.B.
        • Rea T.D.
        • Bobrow B.J.
        • et al.
        Emergency medical service dispatch cardiopulmonary resuscitation prearrival instructions to improve survival from out-of-hospital cardiac arrest: a scientific statement from the American Heart Association.
        Circulation. 2012; 125: 648-655https://doi.org/10.1161/CIR.0b013e31823ee5fc
        • Olasveengen T.M.
        • de Caen A.R.
        • Mancini M.E.
        • et al.
        2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations summary.
        Circulation. 2017; 136: e424-e440https://doi.org/10.1161/CIR.0000000000000541
      8. Nuthall G, Van de Voorde P, Atkins DL, et al. Advanced airway interventions in pediatric cardiac arrest: Paediatric Consensus on Science With Treatment Recommendations. January 2019. https://costr.ilcor.org/document/advanced-airway-interventions-in-pediatric-cardiac-arrest. [Accessed 27 March 2019].

        • Gausche M.
        • Lewis R.J.
        • Stratton S.J.
        • et al.
        Effect of out-of-hospital pediatric endotracheal intubation on survival and neurological outcome: a controlled clinical trial.
        JAMA. 2000; 283: 783-790
        • Andersen L.W.
        • Raymond T.T.
        • Berg R.A.
        • et al.
        Association between tracheal intubation during pediatric in-hospital cardiac arrest and survival.
        JAMA. 2016; 316: 1786-1797https://doi.org/10.1001/jama.2016.14486
        • Hansen M.L.
        • Lin A.
        • Eriksson C.
        • et al.
        A comparison of pediatric airway management techniques during out-of-hospital cardiac arrest using the CARES database.
        Resuscitation. 2017; 120: 51-56https://doi.org/10.1016/j.resuscitation.2017.08.015
        • Ohashi-Fukuda N.
        • Fukuda T.
        • Doi K.
        • Morimura N.
        Effect of prehospital advanced airway management for pediatric out-of-hospital cardiac arrest.
        Resuscitation. 2017; 114: 66-72https://doi.org/10.1016/j.resuscitation.2017.03.002
        • Abe T.
        • Nagata T.
        • Hasegawa M.
        • Hagihara A.
        Life support techniques related to survival after out-of-hospital cardiac arrest in infants.
        Resuscitation. 2012; 83: 612-618https://doi.org/10.1016/j.resuscitation.2012.01.024
        • Aijian P.
        • Tsai A.
        • Knopp R.
        • Kallsen G.W.
        Endotracheal intubation of pediatric patients by paramedics.
        Ann Emerg Med. 1989; 18: 489-494https://doi.org/10.1016/s0196-0644(89)80830-3
        • Deasy C.
        • Bernard S.A.
        • Cameron P.
        • et al.
        Epidemiology of paediatric out-of-hospital cardiac arrest in Melbourne, Australia.
        Resuscitation. 2010; 81: 1095-1100https://doi.org/10.1016/j.resuscitation.2010.04.029
        • Del Castillo J.
        • López-Herce J.
        • Matamoros M.
        • et al.
        Long-term evolution after in-hospital cardiac arrest in children: prospective multicenter multinational study.
        Resuscitation. 2015; 96: 126-134https://doi.org/10.1016/j.resuscitation.2015.07.037
        • Guay J.
        • Lortie L.
        An evaluation of pediatric in-hospital advanced life support interventions using the pediatric Utstein guidelines: a review of 203 cardiorespiratory arrests.
        Can J Anaesth. 2004; 51: 373-378https://doi.org/10.1007/BF03018242
        • Pitetti R.
        • Glustein J.Z.
        • Bhende M.S.
        Prehospital care and outcome of pediatric out-of-hospital cardiac arrest.
        Prehosp Emerg Care. 2002; 6: 283-290
        • Sirbaugh P.E.
        • Pepe P.E.
        • Shook J.E.
        • et al.
        A prospective, population-based study of the demographics, epidemiology, management, and outcome of out-of-hospital pediatric cardiopulmonary arrest.
        Ann Emerg Med. 1999; 33: 174-184https://doi.org/10.1016/s0196-0644(99)70391-4
        • Tham L.P.
        • Wah W.
        • Phillips R.
        • et al.
        Epidemiology and outcome of paediatric out-of-hospital cardiac arrests: a paediatric sub-study of the Pan-Asian Resuscitation Outcomes Study (PAROS).
        Resuscitation. 2018; 125: 111-117https://doi.org/10.1016/j.resuscitation.2018.01.040
        • Fink E.L.
        • Prince D.K.
        • Kaltman J.R.
        • et al.
        Unchanged pediatric out-of-hospital cardiac arrest incidence and survival rates with regional variation in North America.
        Resuscitation. 2016; 107: 121-128https://doi.org/10.1016/j.resuscitation.2016.07.244
        • Tijssen J.A.
        • Prince D.K.
        • Morrison L.J.
        • et al.
        Time on the scene and interventions are associated with improved survival in pediatric out-of-hospital cardiac arrest.
        Resuscitation. 2015; 94: 1-7https://doi.org/10.1016/j.resuscitation.2015.06.012
        • Friedrich J.O.
        • Adhikari N.K.
        • Beyene J.
        Inclusion of zero total event trials in meta-analyses maintains analytic consistency and incorporates all available data.
        BMC Med Res Methodol. 2007; 7: 5https://doi.org/10.1186/1471-2288-7-5
        • Fink E.L.
        • Clark R.S.
        • Kochanek P.M.
        • Bell M.J.
        • Watson R.S.
        A tertiary care center’s experience with therapeutic hypothermia after pediatric cardiac arrest.
        Pediatr Crit Care Med. 2010; 11: 66-74https://doi.org/10.1097/PCC.0b013e3181c58237
        • de Caen A.R.
        • Maconochie I.K.
        • Aickin R.
        • et al.
        Part 6: pediatric basic life support and pediatric advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.
        Circulation. 2015; 132: S177-S1203https://doi.org/10.1161/CIR.0000000000000275
      9. Guerguerian AM, de Caen AR, Aickin RP, et al. Extracorporeal cardiopulmonary resuscitation (ECPR) for cardiac arrest–pediatrics: Pediatric Consensus on Science With Treatment Recommendations. International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force. April 15, 2019. https://costr.ilcor.org/document/extracorporeal-cardiopulmonary-resuscitation-ecpr-for-cardiac-arrest-pediatrics. [Accessed 22 May 2019].

        • Lasa J.J.
        • Rogers R.S.
        • Localio R.
        • et al.
        Extracorporeal cardiopulmonary resuscitation (E-CPR) during pediatric in-hospital cardiopulmonary arrest is associated with improved survival to discharge: a report from the American Heart Association’s Get With The Guidelines-Resuscitation (GWTG-R) Registry.
        Circulation. 2016; 133: 165-176https://doi.org/10.1161/CIRCULATIONAHA.115.016082
        • Ortmann L.
        • Prodhan P.
        • Gossett J.
        • et al.
        Outcomes after in-hospital cardiac arrest in children with cardiac disease: a report from Get With The Guidelines–Resuscitation.
        Circulation. 2011; 124: 2329-2337https://doi.org/10.1161/CIRCULATIONAHA.110.013466
        • Alsoufi B.
        • Al-Radi O.O.
        • Nazer R.I.
        • Gruenwald C.
        • Foreman C.
        • Williams W.G.
        • et al.
        Survival outcomes after rescue extracorporeal cardiopulmonary resuscitation in pediatric patients with refractory cardiac arrest.
        J Thorac Cardiovasc Surg. 2007; 134 (952–959.e2)https://doi.org/10.1016/j.jtcvs.2007.05.054
        • Turek J.W.
        • Andersen N.D.
        • Lawson D.S.
        • et al.
        Outcomes before and after implementation of a pediatric rapid-response extracorporeal membrane oxygenation program.
        Ann Thorac Surg. 2013; 95: 2140-2146https://doi.org/10.1016/j.athoracsur.2013.01.050
        • del Nido P.J.
        • Dalton H.J.
        • Thompson A.E.
        • Siewers R.D.
        Extracorporeal membrane oxygenator rescue in children during cardiac arrest after cardiac surgery.
        Circulation. 1992; 86: II300-II304
        • Dalton H.J.
        • Siewers R.D.
        • Fuhrman B.P.
        • et al.
        Extracorporeal membrane oxygenation for cardiac rescue in children with severe myocardial dysfunction.
        Crit Care Med. 1993; 21: 1020-1028https://doi.org/10.1097/00003246-199307000-00016
        • Duncan B.W.
        • Ibrahim A.E.
        • Hraska V.
        • et al.
        Use of rapid-deployment extracorporeal membrane oxygenation for the resuscitation of pediatric patients with heart disease after cardiac arrest.
        J Thorac Cardiovasc Surg. 1998; 116: 305-311
        • Mahle W.T.
        • Forbess J.M.
        • Kirshbom P.M.
        • Cuadrado A.R.
        • Simsic J.M.
        • Kanter K.R.
        Cost-utility analysis of salvage cardiac extracorporeal membrane oxygenation in children.
        J Thorac Cardiovasc Surg. 2005; 129: 1084-1090https://doi.org/10.1016/j.jtcvs.2004.08.012
        • Lowry A.W.
        • Morales D.L.
        • Graves D.E.
        • et al.
        Characterization of extracorporeal membrane oxygenation for pediatric cardiac arrest in the United States: analysis of the kids’ inpatient database.
        Pediatr Cardiol. 2013; 34: 1422-1430https://doi.org/10.1007/s00246-013-0666-8
      10. Aickin RP, de Caen AR, Atkins DL, et al. Pediatric targeted temperature management post cardiac arrest 2019. https://costr.ilcor.org/document/pediatric-targeted-temperature-management-post-cardiac-arrest.

        • Fiser D.H.
        Assessing the outcome of pediatric intensive care.
        J Pediatr. 1992; 121: 68-74https://doi.org/10.1016/s0022-3476(05)82544-2
        • Sparrow S.S.
        • Cicchetti D.V.
        • Balla D.A.
        Vineland Adaptive Behavior Scales (Vineland-II).
        American Guidance Service, Circle Pines, MN2005
        • Varni J.W.
        • Seid M.
        • Rode C.A.
        The PedsQL: measurement model for the Pediatric Quality of Life Inventory.
        Med Care. 1999; 37: 126-139
        • Raat H.
        • Landgraf J.M.
        • Oostenbrink R.
        • Moll H.A.
        • Essink-Bot M.L.
        Reliability and validity of the Infant and Toddler Quality of Life Questionnaire (ITQOL) in a general population and respiratory disease sample.
        Qual Life Res. 2007; 16: 445-460https://doi.org/10.1007/s11136-006-9134-8
        • Moler F.W.
        • Silverstein F.S.
        • Holubkov R.
        • et al.
        Therapeutic hypothermia after in-hospital cardiac arrest in children.
        N Engl J Med. 2017; 376: 318-329https://doi.org/10.1056/NEJMoa1610493
        • Moler F.W.
        • Silverstein F.S.
        • Holubkov R.
        • et al.
        Therapeutic hypothermia after out-of-hospital cardiac arrest in children.
        N Engl J Med. 2015; 372: 1898-1908https://doi.org/10.1056/NEJMoa1411480
        • Chang I.
        • Kwak Y.H.
        • Shin S.D.
        • et al.
        Therapeutic hypothermia and outcomes in paediatric out-of-hospital cardiac arrest: a nationwide observational study.
        Resuscitation. 2016; 105: 8-15https://doi.org/10.1016/j.resuscitation.2016.04.021
        • Cheng H.H.
        • Rajagopal S.K.
        • Sansevere A.J.
        • et al.
        Post-arrest therapeutic hypothermia in pediatric patients with congenital heart disease.
        Resuscitation. 2018; 126: 83-89https://doi.org/10.1016/j.resuscitation.2018.02.022
        • Lin J.J.
        • Hsia S.H.
        • Wang H.S.
        • Chiang M.C.
        • Lin K.L.
        Therapeutic hypothermia associated with increased survival after resuscitation in children.
        Pediatr Neurol. 2013; 48: 285-290https://doi.org/10.1016/j.pediatrneurol.2012.12.021
        • Lin J.J.
        • Lin C.Y.
        • Hsia S.H.
        • et al.
        72-H therapeutic hypothermia improves neurological outcomes in paediatric asphyxial out-of-hospital cardiac arrest: an exploratory investigation.
        Resuscitation. 2018; 133: 180-186https://doi.org/10.1016/j.resuscitation.2018.08.019
        • Scholefield B.R.
        • Morris K.P.
        • Duncan H.P.
        • et al.
        Evolution, safety and efficacy of targeted temperature management after pediatric cardiac arrest.
        Resuscitation. 2015; 92: 19-25https://doi.org/10.1016/j.resuscitation.2015.04.007
        • Torres-Andres F.
        • Fink E.L.
        • Bell M.J.
        • Sharma M.S.
        • Yablonsky E.J.
        • Sanchez-de-Toledo J.
        Survival and long-term functional outcomes for children with cardiac arrest treated with extracorporeal cardiopulmonary resuscitation.
        Pediatr Crit Care Med. 2018; 19: 451-458https://doi.org/10.1097/PCC.0000000000001524
        • Doherty D.R.
        • Parshuram C.S.
        • Gaboury I.
        • et al.
        Hypothermia therapy after pediatric cardiac arrest.
        Circulation. 2009; 119: 1492-1500https://doi.org/10.1161/CIRCULATIONAHA.108.791384
        • Moler F.W.
        • Hutchison J.S.
        • Nadkarni V.M.
        • et al.
        Targeted temperature management after pediatric cardiac arrest due to drowning: outcomes and complications.
        Pediatr Crit Care Med. 2016; 17: 712-720https://doi.org/10.1097/PCC.0000000000000763
        • Saugstad O.D.
        Room air resuscitation: two decades of neonatal research.
        Early Hum Dev. 2005; 81: 111-116https://doi.org/10.1016/j.earlhumdev.2004.10.009
        • Lorente-Pozo S.
        • Parra-Llorca A.
        • Núñez-Ramiro A.
        • et al.
        The oxygen load supplied during delivery room stabilization of preterm infants modifies the DNA methylation profile.
        J Pediatr. 2018; 202 (70–76.e2)https://doi.org/10.1016/j.jpeds.2018.07.009
        • Perlman J.M.
        • Wyllie J.
        • Kattwinkel J.
        • et al.
        Part 11: neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.
        Circulation. 2010; 122: S516-S538https://doi.org/10.1161/CIRCULATIONAHA.110.971127
        • Perlman J.M.
        • Wyllie J.
        • Kattwinkel J.
        • et al.
        Part 7: neonatal resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.
        Circulation. 2015; 132: S204-S241https://doi.org/10.1161/CIR.0000000000000276
        • Sarnat H.B.
        • Sarnat M.S.
        Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study.
        Arch Neurol. 1976; 33: 696-705https://doi.org/10.1001/archneur.1976.00500100030012
      11. Isayama T, Dawson JA, Roehr CC, et al. Initial oxygen concentration for term neonatal resuscitation. International Liaison Committee on Resuscitation (ILCOR) Neonatal Life Support Task Force. April 1, 2019. https://costr.ilcor.org/document/initial-oxygen-concentration-for-term-neonatal-resuscitation. [Accessed 22 May 2019].

        • Ramji S.
        • Ahuja S.
        • Thirupuram S.
        • Rootwelt T.
        • Rooth G.
        • Saugstad O.D.
        Resuscitation of asphyxic newborn infants with room air or 100% oxygen.
        Pediatr Res. 1993; 34: 809-812https://doi.org/10.1203/00006450-199312000-00023
        • Saugstad O.D.
        • Rootwelt T.
        • Aalen O.
        Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study.
        Pediatrics. 1998; 102e1https://doi.org/10.1542/peds.102.1.e1
        • Vento M.
        • Asensi M.
        • Sastre J.
        • Lloret A.
        • Garcia-Sala F.
        • Viña J.
        Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen.
        J Pediatr. 2003; 142: 240-246
        • Ramji S.
        • Rasaily R.
        • Mishra P.K.
        • et al.
        Resuscitation of asphyxiated newborns with room air or 100% oxygen at birth: a multicentric clinical trial.
        Indian Pediatr. 2003; 40: 510-517
        • Bajaj N.
        • Udani R.H.
        • Nanavati R.N.
        Room air vs. 100 per cent oxygen for neonatal resuscitation: a controlled clinical trial.
        J Trop Pediatr. 2005; 51: 206-211https://doi.org/10.1093/tropej/fmh086
        • Vento M.
        • Sastre J.
        • Asensi M.A.
        • Viña J.
        Room-air resuscitation causes less damage to heart and kidney than 100% oxygen.
        Am J Respir Crit Care Med. 2005; 172: 1393-1398https://doi.org/10.1164/rccm.200412-1740OC
        • Toma A.I.
        • Nanea M.
        • Scheiner M.
        • Mitu R.
        • Petrescu I.
        • Matu E.
        Effects of the gas used in the resuscitation of the newborn in the post-resuscitation haemodynamics.
        Asfixia Perinatala Primul Congres National de Neonatologie. 2006; : 33-44
        • Saugstad O.D.
        • Ramji S.
        • Irani S.F.
        • et al.
        Resuscitation of newborn infants with 21% or 100% oxygen: follow-up at 18 to 24 months.
        Pediatrics. 2003; 112: 296-300https://doi.org/10.1542/peds.112.2.296
        • Kapadia V.
        • Wyckoff M.H.
        Oxygen therapy in the delivery room: what is the right dose?.
        Clin Perinatol. 2018; 45: 293-306https://doi.org/10.1016/j.clp.2018.01.014
        • International Committee for the Classification of Retinopathy of Prematurity
        The International Classification of Retinopathy of Prematurity revisited.
        Arch Ophthalmol. 2005; 123: 991-999https://doi.org/10.1001/archopht.123.7.991
        • Walsh M.C.
        • Kliegman R.M.
        Necrotizing enterocolitis: treatment based on staging criteria.
        Pediatr Clin North Am. 1986; 33: 179-201
        • Higgins R.D.
        • Jobe A.H.
        • Koso-Thomas M.
        • et al.
        Bronchopulmonary dysplasia: executive summary of a workshop.
        J Pediatr. 2018; 197: 300-308https://doi.org/10.1016/j.jpeds.2018.01.043
        • Papile L.A.
        • Burstein J.
        • Burstein R.
        • Koffler H.
        Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm.
        J Pediatr. 1978; 92: 529-534https://doi.org/10.1016/s0022-3476(78)80282-0
        • Lundstrøm K.E.
        • Pryds O.
        • Greisen G.
        Oxygen at birth and prolonged cerebral vasoconstriction in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 1995; 73: F81-F86
        • Wang C.L.
        • Anderson C.
        • Leone T.A.
        • Rich W.
        • Govindaswami B.
        • Finer N.N.
        Resuscitation of preterm neonates by using room air or 100% oxygen.
        Pediatrics. 2008; 121: 1083-1089https://doi.org/10.1542/peds.2007-1460
        • Vento M.
        • Moro M.
        • Escrig R.
        • et al.
        Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease.
        Pediatrics. 2009; 124: e439-e449https://doi.org/10.1542/peds.2009-0434
        • Rabi Y.
        • Singhal N.
        • Nettel-Aguirre A.
        Room-air versus oxygen administration for resuscitation of preterm infants: the ROAR study.
        Pediatrics. 2011; 128: e374-e381https://doi.org/10.1542/peds.2010-3130
        • Armanian A.M.
        • Badiee Z.
        Resuscitation of preterm newborns with low concentration oxygen versus high concentration oxygen.
        J Res Pharm Pract. 2012; 1: 25-29https://doi.org/10.4103/2279-042X.99674
        • Kapadia V.S.
        • Chalak L.F.
        • Sparks J.E.
        • Allen J.R.
        • Savani R.C.
        • Wyckoff M.H.
        Resuscitation of preterm neonates with limited versus high oxygen strategy.
        Pediatrics. 2013; 132: e1488-e1496https://doi.org/10.1542/peds.2013-0978
        • Aguar M.
        • Brugada M.
        • Escobar J.
        • et al.
        Resuscitation of ELBW infants with initial FiO2 of 30% vs. 60%, a randomized, controlled, blinded study: the REOX trial.
        in: 2013 PAS Annual Meeting, May 4–7, Washington, DC2013
        • Rook D.
        • Schierbeek H.
        • Vento M.
        • et al.
        Resuscitation of preterm infants with different inspired oxygen fractions.
        J Pediatr. 2014; 164 (1322–6.e3)https://doi.org/10.1016/j.jpeds.2014.02.019
        • Oei J.L.
        • Saugstad O.D.
        • Lui K.
        • et al.
        Targeted oxygen in the resuscitation of preterm infants, a randomized clinical trial.
        Pediatrics. 2017; 139e20161452https://doi.org/10.1542/peds.2016-1452
        • Harling A.E.
        • Beresford M.W.
        • Vince G.S.
        • Bates M.
        • Yoxall C.W.
        Does the use of 50% oxygen at birth in preterm infants reduce lung injury?.
        Arch Dis Child Fetal Neonatal Ed. 2005; 90: F401-F405https://doi.org/10.1136/adc.2004.059287
        • Dawson J.A.
        • Kamlin C.O.
        • Wong C.
        • et al.
        Oxygen saturation and heart rate during delivery room resuscitation of infants <30 weeks’ gestation with air or 100% oxygen.
        Arch Dis Child Fetal Neonatal Ed. 2009; 94: F87-F91https://doi.org/10.1136/adc.2008.141341
        • Rabi Y.
        • Lodha A.
        • Soraisham A.
        • Singhal N.
        • Barrington K.
        • Shah P.S.
        Outcomes of preterm infants following the introduction of room air resuscitation.
        Resuscitation. 2015; 96: 252-259https://doi.org/10.1016/j.resuscitation.2015.08.012
        • Soraisham A.S.
        • Rabi Y.
        • Shah P.S.
        • et al.
        Neurodevelopmental outcomes of preterm infants resuscitated with different oxygen concentration at birth.
        J Perinatol. 2017; 37: 1141-1147https://doi.org/10.1038/jp.2017.83
        • Kapadia V.S.
        • Lal C.V.
        • Kakkilaya V.
        • Heyne R.
        • Savani R.C.
        • Wyckoff M.H.
        Impact of the Neonatal Resuscitation Program-recommended low oxygen strategy on outcomes of infants born preterm.
        J Pediatr. 2017; 191: 35-41https://doi.org/10.1016/j.jpeds.2017.08.074
      12. Roehr CC, Weiner GM, Isayama T, et al. Initial oxygen concentration for preterm neonatal resuscitation. International Liaison Committee on Resuscitation (ILCOR) Neonatal Life Support Task Force. February 25, 2019. https://costr.ilcor.org/document/initial-oxygen-concentration-for-preterm-neonatal-resuscitation. [Accessed 22 May 2019].

        • Boronat N.
        • Aguar M.
        • Rook D.
        • et al.
        Survival and neurodevelopmental outcomes of preterms resuscitated with different oxygen fractions.
        Pediatrics. 2016; 138https://doi.org/10.1542/peds.2016-1405
        • Thamrin V.
        • Saugstad O.D.
        • Tarnow-Mordi W.
        • et al.
        Preterm infant outcomes after randomization to initial resuscitation with FiO2 0.21 or 1.0.
        J Pediatr. 2018; 201 (55–61.e1)https://doi.org/10.1016/j.jpeds.2018.05.053
        • Munkeby B.H.
        • Børke W.B.
        • Bjørnland K.
        • et al.
        Resuscitation with 100% O2 increases cerebral injury in hypoxemic piglets.
        Pediatr Res. 2004; 56: 783-790https://doi.org/10.1203/01.PDR.0000141988.89820.E3
        • Matsuyama T.
        • Kiyohara K.
        • Kitamura T.
        • et al.
        Hospital characteristics and favourable neurological outcome among patients with out-of-hospital cardiac arrest in Osaka, Japan.
        Resuscitation. 2017; 110: 146-153https://doi.org/10.1016/j.resuscitation.2016.11.009
        • Tagami T.
        • Hirata K.
        • Takeshige T.
        • et al.
        Implementation of the fifth link of the chain of survival concept for out-of-hospital cardiac arrest.
        Circulation. 2012; 126: 589-597https://doi.org/10.1161/CIRCULATIONAHA.111.086173
        • Bhanji F.
        • Finn J.C.
        • Lockey A.
        • et al.
        Part 8: education, implementation, and teams: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.
        Circulation. 2015; 132: S242-S268https://doi.org/10.1161/CIR.0000000000000277
        • Finn J.C.
        • Bhanji F.
        • Lockey A.
        • et al.
        Part 8: education, implementation, and teams: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations.
        Resuscitation. 2015; 95: e203-e224https://doi.org/10.1016/j.resuscitation.2015.07.046
      13. Yeung J, Bray J, Reynolds J, et al. Cardiac arrest centers versus non-cardiac arrest centers—adults: Consensus on Science With Treatment Recommendations. International Liaison Committee on Resuscitation (ILCOR) EIT and ALS Task Forces. April 15, 2019. https://costr.ilcor.org/document/cardiac-arrest-centers-versus-non-cardiac-arrest-centers-adults. [Accessed 22 May 2019].

        • Seiner J.
        • Polasek R.
        • Lejsek J.
        • Strycek M.
        • Karasek J.
        Cardiac arrest center: one-year experience of the Regional Hospital Liberec.
        Cor et Vasa. 2018; 60: e234-e238
        • Kragholm K.
        • Malta Hansen C.
        • Dupre M.E.
        • et al.
        Direct transport to a percutaneous cardiac intervention center and outcomes in patients with out-of-hospital cardiac arrest.
        Circ Cardiovasc Qual Outcomes. 2017; 10e003414https://doi.org/10.1161/CIRCOUTCOMES.116.003414
        • Spaite D.W.
        • Bobrow B.J.
        • Stolz U.
        • et al.
        Statewide regionalization of postarrest care for out-of-hospital cardiac arrest: association with survival and neurologic outcome.
        Ann Emerg Med. 2014; 64 (496–506.e1)https://doi.org/10.1016/j.annemergmed.2014.05.028
        • Couper K.
        • Kimani P.K.
        • Gale C.P.
        • et al.
        Patient, health service factors and variation in mortality following resuscitated out-of-hospital cardiac arrest in acute coronary syndrome: analysis of the Myocardial Ischaemia National Audit Project.
        Resuscitation. 2018; 124: 49-57https://doi.org/10.1016/j.resuscitation.2018.01.011
        • Søholm H.
        • Kjaergaard J.
        • Bro-Jeppesen J.
        • et al.
        Prognostic implications of level-of-care at tertiary heart centers compared with other hospitals after resuscitation from out-of-hospital cardiac arrest.
        Circ Cardiovasc Qual Outcomes. 2015; 8: 268-276https://doi.org/10.1161/CIRCOUTCOMES.115.001767
        • Harnod D.
        • Ma M.H.M.
        • Chang W.H.
        • Chang R.E.
        • Chang C.H.
        Mortality factors in out-of-hospital cardiac arrest patients: a nationwide population-based study in Taiwan.
        Int J Gerontol. 2013; 7: 216-220
        • Elmer J.
        • Callaway C.W.
        • Chang C.H.
        • et al.
        Long-term outcomes of out-of-hospital cardiac arrest care at regionalized centers.
        Ann Emerg Med. 2019; 73: 29-39https://doi.org/10.1016/j.annemergmed.2018.05.018
        • Elmer J.
        • Rittenberger J.C.
        • Coppler P.J.
        • et al.
        Long-term survival benefit from treatment at a specialty center after cardiac arrest.
        Resuscitation. 2016; 108: 48-53https://doi.org/10.1016/j.resuscitation.2016.09.008
        • Brooks S.C.
        • Scales D.C.
        • Pinto R.
        • et al.
        The Postcardiac Arrest Consult Team: impact on hospital care processes for out-of-hospital cardiac arrest patients.
        Crit Care Med. 2016; 44: 2037-2044https://doi.org/10.1097/CCM.0000000000001863
        • Andrew E.
        • Nehme Z.
        • Wolfe R.
        • Bernard S.
        • Smith K.
        Long-term survival following out-of-hospital cardiac arrest.
        Heart. 2017; 103: 1104-1110https://doi.org/10.1136/heartjnl-2016-310485
        • Mumma B.E.
        • Diercks D.B.
        • Wilson M.D.
        • Holmes J.F.
        Association between treatment at an ST-segment elevation myocardial infarction center and neurologic recovery after out-of-hospital cardiac arrest.
        Am Heart J. 2015; 170: 516-523https://doi.org/10.1016/j.ahj.2015.05.020
        • Tranberg T.
        • Lippert F.K.
        • Christensen E.F.
        • et al.
        Distance to invasive heart centre, performance of acute coronary angiography, and angioplasty and associated outcome in out-of-hospital cardiac arrest: a nationwide study.
        Eur Heart J. 2017; 38: 1645-1652https://doi.org/10.1093/eurheartj/ehx104
        • Cournoyer A.
        • Notebaert É
        • de Montigny L.
        • et al.
        Impact of the direct transfer to percutaneous coronary intervention-capable hospitals on survival to hospital discharge for patients with out-of-hospital cardiac arrest.
        Resuscitation. 2018; 125: 28-33https://doi.org/10.1016/j.resuscitation.2018.01.048
        • Lick C.J.
        • Aufderheide T.P.
        • Niskanen R.A.
        • et al.
        Take Heart America: a comprehensive, community-wide, systems-based approach to the treatment of cardiac arrest.
        Crit Care Med. 2011; 39: 26-33https://doi.org/10.1097/CCM.0b013e3181fa7ce4
        • Stub D.
        • Smith K.
        • Bray J.E.
        • Bernard S.
        • Duffy S.J.
        • Kaye D.M.
        Hospital characteristics are associated with patient outcomes following out-of-hospital cardiac arrest.
        Heart. 2011; 97: 1489-1494https://doi.org/10.1136/hrt.2011.226431
        • Chocron R.
        • Bougouin W.
        • Beganton F.
        • et al.
        Are characteristics of hospitals associated with outcome after cardiac arrest? Insights from the Great Paris registry.
        Resuscitation. 2017; 118: 63-69https://doi.org/10.1016/j.resuscitation.2017.06.019
        • Lai C.Y.
        • Lin F.H.
        • Chu H.
        • et al.
        Survival factors of hospitalized out-of-hospital cardiac arrest patients in Taiwan: a retrospective study.
        PLoS One. 2018; 13e0191954https://doi.org/10.1371/journal.pone.0191954
        • Søholm H.
        • Wachtell K.
        • Nielsen S.L.
        • et al.
        Tertiary centres have improved survival compared to other hospitals in the Copenhagen area after out-of-hospital cardiac arrest.
        Resuscitation. 2013; 84: 162-167https://doi.org/10.1016/j.resuscitation.2012.06.029
        • McKenzie N.
        • Williams T.A.
        • Ho K.M.
        • et al.
        Direct transport to a PCI-capable hospital is associated with improved survival after adult out-of-hospital cardiac arrest of medical aetiology.
        Resuscitation. 2018; 128: 76-82https://doi.org/10.1016/j.resuscitation.2018.04.039
        • Patterson T.
        • Perkins G.D.
        • Joseph J.
        • et al.
        A Randomised tRial of Expedited transfer to a cardiac arrest centre for non-ST elevation ventricular fibrillation out-of-hospital cardiac arrest: the ARREST pilot randomised trial.
        Resuscitation. 2017; 115: 185-191https://doi.org/10.1016/j.resuscitation.2017.01.020
        • Geri G.
        • Gilgan J.
        • Wu W.
        • et al.
        Does transport time of out-of-hospital cardiac arrest patients matter? A systematic review and meta-analysis.
        Resuscitation. 2017; 115: 96-101https://doi.org/10.1016/j.resuscitation.2017.04.003
        • Bartoletti A.
        • Fabiani P.
        • Bagnoli L.
        • et al.
        Physical injuries caused by a transient loss of consciousness: main clinical characteristics of patients and diagnostic contribution of carotid sinus massage.
        Eur Heart J. 2008; 29: 618-624https://doi.org/10.1093/eurheartj/ehm563
      14. Jensen JL, Cassan P, Meyran D, et al. First aid interventions for presyncope: Consensus on Science With Treatment Recommendations. International Liaison Committee on Resuscitation (ILCOR) First Aid and Pediatric Task Forces. February 25, 2019. https://costr.ilcor.org/document/first-aid-interventions-for-presyncope. [Accessed 22 May 2019].

        • Brignole M.
        • Croci F.
        • Menozzi C.
        • et al.
        Isometric arm counter-pressure maneuvers to abort impending vasovagal syncope.
        J Am Coll Cardiol. 2002; 40: 2053-2059https://doi.org/10.1016/s0735-1097(02)02683-9
        • Alizadeh A.
        • Peighambari M.
        • Keikhavani A.
        • et al.
        The role of acute physical maneuver in preventing vasovagal syncope: a randomized clinical trial.
        Clinic Cardia Electrophysiol. 2016; 1e5348
        • Clarke D.A.
        • Medow M.S.
        • Taneja I.
        • Ocon A.J.
        • Stewart J.M.
        Initial orthostatic hypotension in the young is attenuated by static handgrip.
        J Pediatr. 2010; 156 (1019–1022.e1)https://doi.org/10.1016/j.jpeds.2010.01.035
        • Krediet C.T.
        • van Dijk N.
        • Linzer M.
        • van Lieshout J.J.
        • Wieling W.
        Management of vasovagal syncope: controlling or aborting faints by leg crossing and muscle tensing.
        Circulation. 2002; 106: 1684-1689https://doi.org/10.1161/01.cir.0000030939.12646.8f
        • Krediet C.T.
        • Go-Schön I.K.
        • van Lieshout J.J.
        • Wieling W.
        Optimizing squatting as a physical maneuver to prevent vasovagal syncope.
        Clin Auton Res. 2008; 18: 179-186https://doi.org/10.1007/s10286-008-0481-0
        • Kim K.H.
        • Cho J.G.
        • Lee K.O.
        • et al.
        Usefulness of physical maneuvers for prevention of vasovagal syncope.
        Circ J. 2005; 69: 1084-1088
        • Croci F.
        • Brignole M.
        • Menozzi C.
        • et al.
        Efficacy and feasibility of isometric arm counter-pressure manoeuvres to abort impending vasovagal syncope during real life.
        Europace. 2004; 6: 287-291https://doi.org/10.1016/j.eupc.2004.03.008
        • Bouvette C.M.
        • McPhee B.R.
        • Opfer-Gehrking T.L.
        • Low P.A.
        Role of physical countermaneuvers in the management of orthostatic hypotension: efficacy and biofeedback augmentation.
        Mayo Clin Proc. 1996; 71: 847-853https://doi.org/10.4065/71.9.847