Abstract
Aim of the study
To address the value of continuous monitoring of bispectral index (BIS) to predict
neurological outcome after cardiac arrest.
Methods
In this prospective observational study in adult comatose patients treated by therapeutic
hypothermia after cardiac arrest we measured bispectral index (BIS) during the first
24 hours of intensive care unit stay. A blinded neurological outcome assessment by cerebral
performance category (CPC) was done 6 months after cardiac arrest.
Results
Forty-six patients (48%) had a good neurological outcome at 6-month, as defined by
a cerebral performance category (CPC) 1-2, and 50 patients (52%) had a poor neurological
outcome (CPC 3-5). Over the 24 h of monitoring, mean BIS values over time were higher in the good outcome group (38 ± 9) compared to the poor outcome group (17 ± 12) (p < 0.001). Analysis of BIS recorded every 30 minutes provided an optimal prediction after 12.5 h, with an area under the receiver operating characteristic curve (AUC) of 0.89, a
specificity of 89% and a sensitivity of 86% using a cut-off value of 23. With a specificity
fixed at 100% (sensitivity 26%) the cut-off BIS value was 2.4 over the first 271 minutes. In multivariable analyses including clinical characteristics, mean BIS value
over the first 12.5 h was a predictor of neurological outcome (p = 6E-6) and provided a continuous net reclassification index of 1.28% (p = 4E-10) and an integrated discrimination improvement of 0.31 (p = 1E-10).
Conclusions
Mean BIS value calculated over the first 12.5 h after ICU admission potentially predicts 6-months neurological outcome after cardiac
arrest.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to ResuscitationAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Targeted Temperature Management at 33 degrees C versus 36 degrees C after Cardiac Arrest.The New England journal of medicine. 2013;
- Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.The New England journal of medicine. 2002; 346: 549-556
- Strong and weak aspects of an established post-resuscitation treatment protocol-A five-year observational study.Resuscitation. 2011; 82: 1186-1193
- Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.The New England journal of medicine. 2002; 346: 557-563
- Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke.Resuscitation. 2008; 79: 350-379
- Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort.Intensive care medicine. 2013; 39: 1972-1980
- Predicting neurological outcome after cardiac arrest.Current opinion in critical care. 2011; 17: 254-259
- Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score.European heart journal. 2006; 27: 2840-2845
- Predictive power of serum NSE and OHCA score regarding 6-month neurologic outcome after out-of-hospital ventricular fibrillation and therapeutic hypothermia.Resuscitation. 2009; 80: 165-170
- Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients.Critical care medicine. 2010; 38: 1838-1844
- Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia.Resuscitation. 2009; 80: 784-789
- Neurological prognostication after cardiac arrest--recommendations from the Swedish Resuscitation Council.Resuscitation. 2013; 84: 867-872
- The bispectral index and suppression ratio are very early predictors of neurological outcome during therapeutic hypothermia after cardiac arrest.Intensive care medicine. 2010; 36: 281-288
- Bispectral index (BIS) helps predicting bad neurological outcome in comatose survivors after cardiac arrest and induced therapeutic hypothermia.Resuscitation. 2009; 80: 437-442
- Neurologic prognostication and bispectral index monitoring after resuscitation from cardiac arrest.Resuscitation. 2010; 81: 1133-1137
- Modeling serum level of s100beta and bispectral index to predict outcome after cardiac arrest.Journal of the American College of Cardiology. 2013; 62: 851-858
- Feasibility of bispectral index monitoring to guide early post-resuscitation cardiac arrest triage.Resuscitation. 2014;
- Assessment of procalcitonin to predict outcome in hypothermia-treated patients after cardiac arrest.Critical care research and practice. 2011; 2011: 631062
- Circulating microRNAs after cardiac arrest.Critical care medicine. 2012; 40: 3209-3214
- The Chemokine (C-X3-C Motif) Receptor 1 is a Candidate Prognostic Biomarker after Cardiac Arrest.J Clinic Experiment Cardiol. 2012; : S2
- Quality Standards Subcommittee of the American Academy of N. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.Neurology. 2006; 67: 203-210
- Target Temperature Management after out-of-hospital cardiac arrest--a randomized, parallel-group, assessor-blinded clinical trial--rationale and design.American heart journal. 2012; 163: 541-548
- Is this patient dead, vegetative, or severely neurologically impaired? Assessing outcome for comatose survivors of cardiac arrest.JAMA: the journal of the American Medical Association. 2004; 291: 870-879
- Estimation of principal components and related models by iterative least squares.Multivariate analysis. 1966; 1: 391-420
- Regression modelling strategies: with applications to linear models, logistic regression, and survival analysis.Springer, 2001
- Regularization Paths for Generalized Linear Models via Coordinate Descent.Journal of statistical software. 2010; 33: 1-22
- Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers.Statistics in medicine. 2011; 30: 11-21
- Early bispectral index and sedation requirements during therapeutic hypothermia predict neurologic recovery following cardiac arrest*.Critical care medicine. 2014; 42: 1204-1212
- Prognostication after cardiac arrest and hypothermia: a prospective study.Annals of neurology. 2010; 67: 301-307
- Effect of Prehospital Induction of Mild Hypothermia on Survival and Neurological Status Among Adults With Cardiac Arrest: A Randomized Clinical Trial.JAMA: the journal of the American Medical Association. 2013;
Article info
Publication history
Published online: September 24, 2014
Accepted:
September 10,
2014
Received in revised form:
September 2,
2014
Received:
July 8,
2014
Footnotes
☆A Spanish translated version of the summary of this article appears as Appendix in the final online version at http://dx.doi.org/10.1016/j.resuscitation.2014.09.009.
Identification
Copyright
© 2014 Elsevier Ireland Ltd. Published by Elsevier Inc. All rights reserved.