Advertisement
Research Article| Volume 60, ISSUE 2, P225-230, February 2004

Download started.

Ok

Biphasic concentration change during continuous midazolam administration in brain-injured patients undergoing therapeutic moderate hypothermia

  • Noriyasu Fukuoka
    Affiliations
    Hospital Pharmacy Division and Intensive Care Unit, Kagawa Medical University, 1750-1, Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
    Search for articles by this author
  • Mayuki Aibiki
    Correspondence
    Corresponding author. Present address: Department of Emergency Medicine, School of Medicine, Ehime University, 454 Shitsukawa, Shigenobu, Onsen, Ehime 791-0295, Japan. Tel.: +81-89-960-5722; fax: +81-89-960-5714.
    Affiliations
    Hospital Pharmacy Division and Intensive Care Unit, Kagawa Medical University, 1750-1, Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
    Search for articles by this author
  • Toyohisa Tsukamoto
    Affiliations
    Hospital Pharmacy Division and Intensive Care Unit, Kagawa Medical University, 1750-1, Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
    Search for articles by this author
  • Keisuke Seki
    Affiliations
    Hospital Pharmacy Division and Intensive Care Unit, Kagawa Medical University, 1750-1, Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
    Search for articles by this author
  • Shushi Morita
    Affiliations
    Hospital Pharmacy Division and Intensive Care Unit, Kagawa Medical University, 1750-1, Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
    Search for articles by this author

      Abstract

      Objective: To define the pharmacokinetics of midazolam, a probe for monitoring cytochrome (CYP) 3A 4 activity, during moderate hypothermic therapy. Design: A prospective randomized study. Setting: The intensive care unit of a medical university hospital. Patients and Interventions: In 15 consecutive brain-injured patients, midazolam concentrations were measured serially using high-performance liquid chromatography (HPLC). Under continuous administration of the agent, eight patients underwent moderate hypothermia of 32–34 °C (hypothermia group) and seven received normothermic therapy (normothermia group). A one-compartment model was selected for pharmacokinetic analyses for the continuous administration. Data represent mean±S.D. Statistical analysis was performed using ANOVA followed by Scheffe’s F-test or the Mann–Whitney U-test (P<0.05). Measurement and main results: Serum midazolam concentrations in the hypothermia group increased linearly until the body temperature (BT) reached 35 °C without plateauing, even during continuous administration, after which the levels decreased remarkably when BT rose to 36 °C. However, the concentrations in the normothermia group remained on a plateau, which lasted until the end of the study. In the hypothermia group, elimination rate constant (ke) and clearance (CL) in the phase below 35 °C BT were much lesser than those above 35 °C BT, whereas distribution volume (Vd) during the hypothermic phase was greater than that during the period above 35 °C BT. Conclusion: This study has demonstrated for the first time that midazolum concentration changes biphasically even during continuous infusion in hypothermic therapy. The mechanisms for the change are unclear. Thus, further studies including confirmation of cytochrome 3A 4 activity are required, while monitoring for the development of undesirable effects from over-dosing is also needed.

      Sumàrio

      Objectivo: Definir a farmacocinética do midazolam, utilizando uma sonda para monitorizar a actividade do citocromo 3A 4 (CYP), durante terapêutica com hipotermia moderada. Desenho: Estudo prospectivo aleatorizado. Ambiente: Uma unidade de cuidados intensivos de um hospital universitário. Doentes e intervenções: Foi utilizada a “cromatografia lı́quida de elevada performance” (HPLC) para medir concentrações de midazolam seriadas em 15 doentes consecutivos com trauma craniano. Oito doentes foram submetidos a hipotermia moderada de 32–34 °C, com administração contı́nua do agente (grupo da hipotermia) e sete fizeram terapêutica normotérmica (grupo da normotermia). Seleccionou-se um modelo monocompartimental para análise farmacocinética da administração contı́nua. Os dados representam a Math Eq. A análise estatı́stica foi realizada utilizando ANOVA seguida do Scheffe’s F-teste ou o Mann–Whitney U-teste (P<0.05). Medições e principais resultados:As concentrações de midazolam sérico no grupo da hipotermia aumentam linearmente, sem planaltos, até a temperatura corporal (BT) atingir os 35 °C, mesmo durante a administração contı́nua; após a qual os nı́veis diminuem marcadamente quando a BT atinge os 36 °C. Contudo, as concentrações no grupo normotermia permanecem em planalto, até ao fim do estudo. No grupo da hipotermia, a constante da taxa de eliminação (kc) e a clearance (CL) na fase abaixo dos 35 °C de BT foram muito inferiores às verificadas acima de 35 °C BT, enquanto que o volume de distribuição (Vd) durante a fase hipotérmica foi superior ao do perı́odo acima dos 35 °C BT. Conclusão: Este estudo demonstrou pela primeira vez que a concentração do midazolam, na terapêutica hipotérmica, muda de forma bifásica mesmo durante a perfusão contı́nua. O mecanismo para esta alteração não é claro. São pois necessários mais estudos, incluindo a confirmação da actividade da citocromo 3A 4, enquanto também é necessário monitorizar o desenvolvimento de efeitos indesejáveis por sobre-dosagem.

      Resumen

      Objetivo: Definir la farmacocinética del Midazolam, se usó un estudio para monitorear la actividad del citocromo 3A 4, durante terapia hipotérmica moderada. Diseño: Estudio randomizado prospectivo. Escenario: Unidad de cuidados intensivos en hospital universitario. Pacientes e intervenciones: En 15 pacientes consecutivos con lesión cerebral, se midieron seriadamente las concentraciones de midazolam usando cromatografı́a lı́quida de alto rendimiento (HPLC). Ocho pacientes bajo infusión continua de midazolam, fueron sometidos a hipotermia moderada de 32–34 °C (grupo hipotermia) y 7 recibieron terapia normo térmica (grupo normo térmico). Se seleccionó un modelo de un compartimiento para análisis fármaco cinético para la administración continuo. Los datos representan el promedio ± S.D. El análisis estadı́stico usando ANOVA seguido de el F-test de Scheffe o el U-test de Mann-Whitney (P<0.05). Mediciones y resultados principales: Las concentraciones séricas de midazolam en el grupo hipotermia aumentaron linealmente hasta que la temperatura corporal (BT) alcanzó 35 °C sin hacer un plateau, aun durante la administración continua, después de la cual los niveles bajaron notablemente cuando la temperatura llegó a 36 °C. Sin embargo, las concentraciones en el grupo normo termia se mantuvieron en un plateau, que se mantuvo hasta el final del estudio. En el grupo hipotermia, la tasa de eliminación constante (ke) y el clearance (CL) en la fase bajo 35 °C BT fue mucho menor que en aquellos sobre 35 °C BT, mientras el volumen de distribución (Vd) durante la fase hipotérmica fue mayor que durante el perı́odo sobre 35 °C BT. Conclusión: Este estudio ha demostrado por primera vez que las concentraciones de midazolam cambian en forma bifásica durante la terapia hipotérmica aun durante la infusión continua. No están claros los mecanismos para el cambio. Ası́, se requieren ulteriores estudios que incluyan la confirmación de la actividad del citocromo 3A 4, es necesario también monitorear el desarrollo de efectos indeseables de sobredosis.

      Keywords

      Palavras Chave

      Palabras Clave

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Resuscitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aibiki M
        • Maekawa S
        • Ogura S
        • Kinoshitay Y
        • Kawai N
        • Yokono S
        Effect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans.
        J. Neurotrauma. 1999; 16: 225-232
        • Aibiki M
        • Maekawa S
        • Yokono S
        Moderate hypothermia improves imbalances of thromboxane A2 and prostaglandin I2 production after traumatic brain injury in humans.
        Critic. Care Med. 2000; 28: 3902-3906
        • Marion D.W
        • Penrod L.E
        • Kelsey S.F
        • Obrist W.D
        • Kochanek P.M
        • Palmer A.M
        • et al.
        Treatment of traumaric brain injury with moderate hypothermia.
        N. Engl. J. Med. 1997; 336: 540-546
      1. The Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 21Feb2002;346:549–56.

        • Aibiki M
        • Maekawa S
        • Seki K
        • Nishiyama T
        • Yokono S
        Activated cytokine production in patients with accidental hypothermia.
        Resuscitation. 1999; 41: 263-268
        • Goh B.C
        • Lee S.C
        • Wang L.Z
        • Fan L
        • Guo J.Y
        • Lamba J
        • et al.
        Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies.
        J. Clin. Oncol. 2002; 20: 3683-3690
        • Metz C
        • Holzschuh M
        • Bein T
        • Woertgen C
        • Frey A
        • Frey I
        • et al.
        Moderate hypothermia in patients with severe head injury cerebral and extracerebral effects.
        J. Neurosurg. 1996; 85: 533-541
      2. Aibiki M, Kawaguchi S, Umegaki O, Ogura S, Kawai N, Kinoshita Y, Yokono S. Intravascular volume expansion during therapeutic moderate hypothermia for brain-injured patients: preliminary report. In: Hayashi N, editors. Brain Hypothermia. Tokyo: Springer; 2000. p. 161–8.

        • Saitoh T
        • Kokue E
        • Shimoda M
        The suppressive effects of lipopolysaccharide-induced acute phase response on hepatic cytochrome P450-dependent drug metabolism in rabbits.
        J. Vet. Pharmacol. Ther. 1999; 22: 87-95
        • ter Horst P.G
        • Foudraine N.A
        • Cuypers G
        • Oldenhof N.J
        Simultaneous determination of levomepromazine, midazolam and their major metabolites in human plasma by reversed-phase liquid chromatography.
        J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003; 791: 389-398
        • Yamaoka K
        • Tanigawara Y
        • Nakagawa T
        • Uno T
        A pharmacokinetic analysis program (multi) for microcomputer.
        J. Pharmacobiodyn. 1981; 4: 879-885
        • Zomorodi K
        • Donner A
        • Somma J
        • Barr J
        • Sladen R
        • Ramsay J
        • et al.
        Population pharmacokinetics of midazolam administered by target controlled infusion for sedation following coronary artery bypass grafting.
        Anesthesiology. 1998; 89: 1418-1429
        • Barr J
        • Zomorodi K
        • Bertaccini E.J
        • Shafer S.L
        • Geller E
        A double-blind, randomized comparison of i.v. lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model.
        Anesthesiology. 2001; 95: 286-298
        • Rekka E
        • Evdokimova E
        • Eeckhoudt S
        • Labar G
        • Calderon P.B
        Role of temperature on protein and mRNA cytochrome P450 3A (CYP3A) isozymes expression and midazolam oxidation by cultured rat precision-cut liver slices.
        Biochem. Pharmacol. 2002; 64: 633-643
        • Ibrahim A
        • Karim A
        • Feldman J
        • Kharach E
        The influence of parecoxib, a parenteral cyclooxygenase-2 specific inhibitor, on the pharmacokinetics and clinical effects of midazolam.
        Anesth. Anaig. 2002; 95: 667-673
        • Xu H
        • Aibiki M
        • Seki K
        • Ogura S
        • Yokono S
        • Ogli K
        • Effects of induced hypothermia on renal sympathetic nerve activity and baroreceptor reflex in urethane-anesthetized rabbits
        Critic. Care Med. 2000; 28: 3854-3860
        • Kinoshita K
        • Sakurai A
        • Mera K
        • Shirai K
        • Hone J
        • Moriya T
        • et al.
        Midazolam for continuous sedation in Japanese critical care patients phase II study.
        J. Int. Med. Res. 2001; 29: 342-348
        • Pea F
        • Furlanut M
        • Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions
        Clin. Pharmacokinet. 2001; 40: 833-868
        • Fry D.E
        The importance of antibiotic pharmacokinetics in critical illness.
        Am. J. Surg. 1996; 172: 205-255
      3. Benet LZ, Kroetz DL, Sheiner LB. Pharmacokinetics. In: Hardinan et al., editors. Good and Gilman’s the pharmacological basis of therapeutics, 9th ed. New York: McGraw-Hill; 1990. p. 3–28.

        • Albrecht S
        • Ihmsen H
        • Hering W
        • Geisslinger G
        • Dingemanse J
        • Schwilden H
        • et al.
        The effect of age on the pharmacokinetics and pharmacodynamics of midazolam.
        J. Clin. Pharmacol. Ther. 1999; 65: 630-639
        • Rocca P
        • Bellone G
        • Benna P
        • Bergamasco B
        • Ravizza L
        • Ferrero P
        Peripheral-type benzodiazepine receptors and diazepam binding inhibitor-like immunoreactivity distribution in human peripheral blood mononuclear cells.
        Immunopharmacology. 1993; 25: 163-178
        • Heller A
        • Heller S
        • Blecken S
        • Urbaschek R
        • Koch T
        Effects of intravenous anesthetics on bacterial elimination in human blood in vitro.
        Acta Anaesthesiol. Scand. 1998; 42: 518-526
        • Aibiki M
        • Kawaguchi S
        • Maekawa N
        Reversible hypophosphatemia during moderate hypothermia therapy for brain-injured patients.
        Critic. Care Med. 2001; 29: 1726-1730